NemoArbField p¶
jnball.spad line 1 [edit on github]
NemoArbField implements fixed precision ball arithmetic using the Julia Nemo package - based on the Arb library.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, Integer) -> %
undocumented
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (%, Integer) -> %
from FloatingPointSystem
- /: (Integer, %) -> %
/ undocumented
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
- accuracyBits: % -> JuliaInt64
accuracyBits(x)
returns the relative accuracy ofx
in bits.
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- addError!: (%, %) -> %
addError!(x, y)
adds the values (absolute) of the midpoint and radius ofy
to the radius ofx
.
- airyAi: % -> %
- airyAiPrime: % -> %
- airyBi: % -> %
- airyBiPrime: % -> %
- angerJ: (%, %) -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, %) -> %
atan(x, y)
computes the inverse tangent of x/y.
- atanh: % -> %
- base: () -> PositiveInteger
from FloatingPointSystem
- besselI: (%, %) -> %
- besselJ: (%, %) -> %
- besselK: (%, %) -> %
- besselY: (%, %) -> %
- bits: % -> JuliaInt64
bits(x)
returns the bit length of the mantissa ofx
. For a result computed at prec bits of precision this can be anywhere in the range 0<=
b
<=
prec. For example 0 has 0 bits, 0.75 has 2 bits, and 3.7 has 126 bits after rounding to prec = 128 (with the default rounding mode) because the two least significant bits are zero and thus get discarded. Source: flint-devel@googlegroups.com- bits: () -> PositiveInteger
from FloatingPointSystem
- bits: PositiveInteger -> PositiveInteger
from FloatingPointSystem
- ceiling: % -> %
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charlierC: (%, %, %) -> %
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Float -> %
coerces(
x
) coercesx
.- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JuliaFloat64 -> %
coerces(
x
) coercesx
.
- commutator: (%, %) -> %
from NonAssociativeRng
- conjugate: % -> %
- contains?: (%, %) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- contains?: (%, JuliaFloat) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- contains?: (%, NemoInteger) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- contains?: (%, NemoRational) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- containsNegative?: % -> Boolean
containsNegative?(x)
cheks whether or notx
contains any negative value.
- containsNonNegative?: % -> Boolean
containsNonNegative?(x)
cheks whether or notx
contains any non negative value.
- containsNonPositive?: % -> Boolean
containsNonPositive?(x)
checks whether or notx
contains any non positive value.
- containsPositive?: % -> Boolean
containsPositive?(x)
cheks whether or notx
contains any positive value.
- containsZero?: % -> Boolean
containsZero?(x)
checks whether or not 0 is contained inx
.
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> JuliaFloat
convert(x)
convertsx
.
- convert: % -> NemoRational
convert(x)
convertsx
.- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> String
from ConvertibleTo String
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- digamma: % -> %
- digits: () -> PositiveInteger
from FloatingPointSystem
- digits: PositiveInteger -> PositiveInteger
from FloatingPointSystem
- diracDelta: % -> %
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- ellipticF: (%, %) -> %
- ellipticK: % -> %
- ellipticPi: (%, %, %) -> %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- exact?: % -> Boolean
exact?(x)
checks whetherx
is exact i.e. with 0 radius.
- exp1: () -> %
exp() returns the NemoArbField
ℯ
(exp(1)).
- exp: % -> %
- exp: () -> %
exp()
returns the NemoArbFieldℯ
(exp(1)).
- expm1: % -> %
expm1(x)
computes accurately e^x-1. It avoids the loss of precision involved in the direct evaluation of exp(x
)-1
for small values ofx
.
- exponent: % -> Integer
from FloatingPointSystem
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- finite?: % -> Boolean
finite?(x)
checks whether or notx
is finite, not an infinity for example.
- float: (Integer, Integer) -> %
from FloatingPointSystem
- float: (Integer, Integer, PositiveInteger) -> %
from FloatingPointSystem
- floor: % -> %
- fractionPart: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- guess: (%, NonNegativeInteger) -> NemoAlgebraicNumber
guess(a, deg)
returns the reconstructed algebraic number found if it succeeds. Up to degree deg.
- hahn_p: (%, %, %, %, %) -> %
- hahnQ: (%, %, %, %, %) -> %
- hahnR: (%, %, %, %, %) -> %
- hahnS: (%, %, %, %, %) -> %
- hankelH1: (%, %) -> %
- hankelH2: (%, %) -> %
- hermiteH: (%, %) -> %
- hurwitzZeta: (%, %) -> %
hurwitzZeta(s,a)
returns the Hurwitz zeta function ofs
and a.
- hypergeometricF: (List %, List %, %) -> %
- integer?: % -> Boolean
integer?(x)
checks whether or notx
is an integer.
- inv: % -> %
from DivisionRing
- jacobiCn: (%, %) -> %
- jacobiDn: (%, %) -> %
- jacobiP: (%, %, %, %) -> %
- jacobiSn: (%, %) -> %
- jacobiTheta: (%, %) -> %
- jacobiZeta: (%, %) -> %
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlId: % -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
- jnball: (%, %) -> %
jnball(x,r)
returns a ball with midpointx
and radiusr
.
- jnrb: Float -> %
jnrb(fl)
returnsfl
as a real Arb ball.
- jnrb: Integer -> %
jnrb(i)
returnsi
as a real Arb ball.
- jnrb: NemoAlgebraicNumber -> %
jnrb(an)
evaluates numericallyan
by converting it to a real Arb field.
- jnrb: NemoExactComplexField -> %
jnrb(necf)
evaluates numericallynecf
by converting it to a real Arb field.
- jnrb: String -> %
jnrb(str)
evaluatesstr
by converting it to a real Arb field.
- kelvinBei: (%, %) -> %
- kelvinBer: (%, %) -> %
- kelvinKei: (%, %) -> %
- kelvinKer: (%, %) -> %
- krawtchoukK: (%, %, %, %) -> %
- kummerM: (%, %, %) -> %
- kummerU: (%, %, %) -> %
- laguerreL: (%, %, %) -> %
- lambertW: % -> %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- ldexp: (%, NemoInteger) -> %
ldexp(x, n)
returnsx
* 2^n.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- legendreP: (%, %, %) -> %
- legendreQ: (%, %, %) -> %
- lerchPhi: (%, %, %) -> %
- log1p: % -> %
log1p(x)
logarithm of 1+x computed accurately.
- log: % -> %
- lommelS1: (%, %, %) -> %
- lommelS2: (%, %, %) -> %
- mantissa: % -> Integer
from FloatingPointSystem
- max: (%, %) -> %
from OrderedSet
- max: () -> % if
from FloatingPointSystem
- meixnerM: (%, %, %, %) -> %
- meixnerP: (%, %, %, %) -> %
- midpoint: % -> %
midpoint(x)
returns the midpoint ofx
.
- min: (%, %) -> %
from OrderedSet
- min: () -> % if
from FloatingPointSystem
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- negative?: % -> Boolean
from OrderedRing
- nonNegative?: % -> Boolean
nonnegative(
v
) checks whether or notx
is greater or equal to zero.
- nonPositive?: % -> Boolean
nonnegative(
v
) checks whether or notx
is lower or equal to zero.
- nonZero?: % -> Boolean
nonZero?(x)
returnstrue
ifx
is equal to 0.
- norm: % -> %
from RealNumberSystem
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from FloatingPointSystem
- overlaps?: (%, %) -> Boolean
overlaps?(x,y)
checks whether or not any part ofx
andy
balls overlaps.
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- polygamma: (%, %) -> %
- polylog: (%, %) -> %
- positive?: % -> Boolean
from OrderedRing
- precision: () -> PositiveInteger
from FloatingPointSystem
- precision: PositiveInteger -> PositiveInteger
from FloatingPointSystem
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- racahR: (%, %, %, %, %, %) -> %
- radius: % -> %
radius(x)
returns the radius ofx
.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- riemannZeta: % -> %
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- round: % -> %
from RealNumberSystem
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- setUnion: (%, %) -> %
setUnion(x,y)
returns the unions of the intervalsx
andy
.
- sign: % -> %
- sign: % -> Integer
from OrderedRing
- sin: % -> %
- sinh: % -> %
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- string: % -> String
from JuliaObjectType
- struveH: (%, %) -> %
- struveL: (%, %) -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- tan: % -> %
- tanh: % -> %
- toString: % -> String
from FloatingPointSystem
- toString: (%, NonNegativeInteger) -> String
from FloatingPointSystem
- trim: % -> %
trim(x)
rounds off insignificant bits from the midpoint.
- truncate: % -> %
from RealNumberSystem
- uniqueInteger: % -> Union(NemoInteger, failed)
uniqueInteger(x)
returns a NemoInteger if there is a unique integer in the intervalx
, “failed” otherwise.
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- unitStep: % -> %
- urand01: () -> %
urand01()
returns an uniformly distributed random number contained in [0,1].
- weberE: (%, %) -> %
- weierstrassP: (%, %, %) -> %
- weierstrassPInverse: (%, %, %) -> %
- weierstrassPPrime: (%, %, %) -> %
- weierstrassSigma: (%, %, %) -> %
- weierstrassZeta: (%, %, %) -> %
- whittakerM: (%, %, %) -> %
- whittakerW: (%, %, %) -> %
- wholePart: % -> Integer
from RealNumberSystem
- wilsonW: (%, %, %, %, %, %) -> %
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid
RetractableTo Fraction Integer