NemoComplexBallΒΆ

jnball.spad line 570 [edit on github]

convenience domain to reflect Nemo AcbField(), i.e. without parameters.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> %

*: (%, NemoArbField 256) -> %

from RightModule NemoArbField 256

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NemoArbField 256, %) -> %

from LeftModule NemoArbField 256

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

/: (Integer, %) -> %

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from ComplexCategory NemoArbField 256

accuracyBits: % -> JuliaInt64

acos: % -> %

from ArcTrigonometricFunctionCategory

acosh: % -> %

from ArcHyperbolicFunctionCategory

acot: % -> %

from ArcTrigonometricFunctionCategory

acoth: % -> %

from ArcHyperbolicFunctionCategory

acsc: % -> %

from ArcTrigonometricFunctionCategory

acsch: % -> %

from ArcHyperbolicFunctionCategory

airyAi: % -> %

from SpecialFunctionCategory

airyAiPrime: % -> %

from SpecialFunctionCategory

airyBi: % -> %

from SpecialFunctionCategory

airyBiPrime: % -> %

from SpecialFunctionCategory

angerJ: (%, %) -> %

from SpecialFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

argument: % -> NemoArbField 256

from ComplexCategory NemoArbField 256

asec: % -> %

from ArcTrigonometricFunctionCategory

asech: % -> %

from ArcHyperbolicFunctionCategory

asin: % -> %

from ArcTrigonometricFunctionCategory

asinh: % -> %

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> %

from ArcTrigonometricFunctionCategory

atanh: % -> %

from ArcHyperbolicFunctionCategory

basis: () -> Vector %

from FramedModule NemoArbField 256

besselI: (%, %) -> %

from SpecialFunctionCategory

besselJ: (%, %) -> %

from SpecialFunctionCategory

besselK: (%, %) -> %

from SpecialFunctionCategory

besselY: (%, %) -> %

from SpecialFunctionCategory

Beta: (%, %) -> %

from SpecialFunctionCategory

Beta: (%, %, %) -> %

from SpecialFunctionCategory

bits: % -> JuliaInt64

ceiling: % -> %

from SpecialFunctionCategory

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

characteristicPolynomial: % -> SparseUnivariatePolynomial NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

charlierC: (%, %, %) -> %

from SpecialFunctionCategory

charthRoot: % -> % if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

charthRoot: % -> Union(%, failed) if NemoArbField 256 has CharacteristicNonZero or NemoArbField 256 has PolynomialFactorizationExplicit and % has CharacteristicNonZero

from PolynomialFactorizationExplicit

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Complex Integer -> %

coerce: Float -> %

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

coerce: NemoArbField 256 -> %

from CoercibleFrom NemoArbField 256

commutator: (%, %) -> %

from NonAssociativeRng

complex: (NemoArbField 256, NemoArbField 256) -> %

from ComplexCategory NemoArbField 256

conditionP: Matrix % -> Union(Vector %, failed) if NemoArbField 256 has PolynomialFactorizationExplicit and % has CharacteristicNonZero or NemoArbField 256 has FiniteFieldCategory

from PolynomialFactorizationExplicit

conjugate: % -> %

from ComplexCategory NemoArbField 256

contains?: (%, %) -> Boolean

contains?: (%, NemoInteger) -> Boolean

contains?: (%, NemoRational) -> Boolean

containsZero?: % -> Boolean

convert: % -> Complex DoubleFloat

from ConvertibleTo Complex DoubleFloat

convert: % -> Complex Float

from ConvertibleTo Complex Float

convert: % -> InputForm if NemoArbField 256 has ConvertibleTo InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if NemoArbField 256 has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> SparseUnivariatePolynomial NemoArbField 256

from ConvertibleTo SparseUnivariatePolynomial NemoArbField 256

convert: % -> String

from ConvertibleTo String

convert: % -> Vector NemoArbField 256

from FramedModule NemoArbField 256

convert: SparseUnivariatePolynomial NemoArbField 256 -> %

from MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

convert: Vector NemoArbField 256 -> %

from FramedModule NemoArbField 256

coordinates: % -> Vector NemoArbField 256

from FramedModule NemoArbField 256

coordinates: (%, Vector %) -> Vector NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

coordinates: (Vector %, Vector %) -> Matrix NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

coordinates: Vector % -> Matrix NemoArbField 256

from FramedModule NemoArbField 256

cos: % -> %

from TrigonometricFunctionCategory

cosh: % -> %

from HyperbolicFunctionCategory

cot: % -> %

from TrigonometricFunctionCategory

coth: % -> %

from HyperbolicFunctionCategory

createPrimitiveElement: () -> % if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

csc: % -> %

from TrigonometricFunctionCategory

csch: % -> %

from HyperbolicFunctionCategory

D: % -> %

from DifferentialRing

D: (%, List Symbol) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NemoArbField 256 -> NemoArbField 256) -> %

from DifferentialExtension NemoArbField 256

D: (%, NemoArbField 256 -> NemoArbField 256, NonNegativeInteger) -> %

from DifferentialExtension NemoArbField 256

D: (%, NonNegativeInteger) -> %

from DifferentialRing

D: (%, Symbol) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

definingPolynomial: () -> SparseUnivariatePolynomial NemoArbField 256

from MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

derivationCoordinates: (Vector %, NemoArbField 256 -> NemoArbField 256) -> Matrix NemoArbField 256

from MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

differentiate: % -> %

from DifferentialRing

differentiate: (%, List Symbol) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NemoArbField 256 -> NemoArbField 256) -> %

from DifferentialExtension NemoArbField 256

differentiate: (%, NemoArbField 256 -> NemoArbField 256, NonNegativeInteger) -> %

from DifferentialExtension NemoArbField 256

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: (%, Symbol) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if NemoArbField 256 has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

digamma: % -> %

from SpecialFunctionCategory

diracDelta: % -> %

from SpecialFunctionCategory

discreteLog: % -> NonNegativeInteger if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if NemoArbField 256 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

discriminant: () -> NemoArbField 256

from FramedAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

discriminant: Vector % -> NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

ellipticE: % -> %

from SpecialFunctionCategory

ellipticE: (%, %) -> %

from SpecialFunctionCategory

ellipticF: (%, %) -> %

from SpecialFunctionCategory

ellipticK: % -> %

from SpecialFunctionCategory

ellipticPi: (%, %, %) -> %

from SpecialFunctionCategory

elt: (%, NemoArbField 256) -> % if NemoArbField 256 has Eltable(NemoArbField 256, NemoArbField 256)

from Eltable(NemoArbField 256, %)

enumerate: () -> List % if NemoArbField 256 has Finite

from Finite

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation NemoArbField 256) -> % if NemoArbField 256 has Evalable NemoArbField 256

from Evalable NemoArbField 256

eval: (%, List Equation NemoArbField 256) -> % if NemoArbField 256 has Evalable NemoArbField 256

from Evalable NemoArbField 256

eval: (%, List NemoArbField 256, List NemoArbField 256) -> % if NemoArbField 256 has Evalable NemoArbField 256

from InnerEvalable(NemoArbField 256, NemoArbField 256)

eval: (%, List Symbol, List NemoArbField 256) -> % if NemoArbField 256 has InnerEvalable(Symbol, NemoArbField 256)

from InnerEvalable(Symbol, NemoArbField 256)

eval: (%, NemoArbField 256, NemoArbField 256) -> % if NemoArbField 256 has Evalable NemoArbField 256

from InnerEvalable(NemoArbField 256, NemoArbField 256)

eval: (%, Symbol, NemoArbField 256) -> % if NemoArbField 256 has InnerEvalable(Symbol, NemoArbField 256)

from InnerEvalable(Symbol, NemoArbField 256)

exact?: % -> Boolean

exp1: () -> %

exp: % -> %

from ElementaryFunctionCategory

exp: () -> %

expm1: % -> %

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

exquo: (%, NemoArbField 256) -> Union(%, failed)

from ComplexCategory NemoArbField 256

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoArbField 256 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoArbField 256 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

finite?: % -> Boolean

floor: % -> %

from SpecialFunctionCategory

fractionPart: % -> %

from SpecialFunctionCategory

Gamma: % -> %

from SpecialFunctionCategory

Gamma: (%, %) -> %

from SpecialFunctionCategory

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

generator: () -> %

from MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

guess: (%, NonNegativeInteger) -> NemoAlgebraicNumber

hahn_p: (%, %, %, %, %) -> %

from SpecialFunctionCategory

hahnQ: (%, %, %, %, %) -> %

from SpecialFunctionCategory

hahnR: (%, %, %, %, %) -> %

from SpecialFunctionCategory

hahnS: (%, %, %, %, %) -> %

from SpecialFunctionCategory

hankelH1: (%, %) -> %

from SpecialFunctionCategory

hankelH2: (%, %) -> %

from SpecialFunctionCategory

hash: % -> SingleInteger if NemoArbField 256 has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if NemoArbField 256 has Hashable

from Hashable

hermiteH: (%, %) -> %

from SpecialFunctionCategory

hurwitzZeta: (%, %) -> %

hypergeometric1F1: (%, %, %) -> %

hypergeometric1F1Regularized: (%, %, %) -> %

hypergeometricF: (List %, List %, %) -> %

from SpecialFunctionCategory

hypergeometricU: (%, %, %) -> %

imag: % -> NemoArbField 256

from ComplexCategory NemoArbField 256

imaginary: () -> %

from ComplexCategory NemoArbField 256

index: PositiveInteger -> % if NemoArbField 256 has Finite

from Finite

init: % if NemoArbField 256 has FiniteFieldCategory

from StepThrough

integer?: % -> Boolean

inv: % -> %

from DivisionRing

jacobiCn: (%, %) -> %

from SpecialFunctionCategory

jacobiDn: (%, %) -> %

from SpecialFunctionCategory

jacobiP: (%, %, %, %) -> %

from SpecialFunctionCategory

jacobiSn: (%, %) -> %

from SpecialFunctionCategory

jacobiTheta: (%, %) -> %

from SpecialFunctionCategory

jacobiZeta: (%, %) -> %

from SpecialFunctionCategory

jlAbout: % -> Void

from JuliaObjectType

jlApply: (String, %) -> %

from JuliaObjectType

jlApply: (String, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %, %) -> %

from JuliaObjectType

jlId: % -> String

from JuliaObjectType

jlRef: % -> SExpression

from JuliaObjectType

jlref: String -> %

from JuliaObjectType

jlType: % -> String

from JuliaObjectType

jncb: (Float, Float) -> %

jncb: (Integer, Integer) -> %

jncb: (String, String) -> %

jncb: Float -> %

jncb: Integer -> %

jncb: NemoAlgebraicNumber -> %

jncb: NemoExactComplexField -> %

jncb: String -> %

kelvinBei: (%, %) -> %

from SpecialFunctionCategory

kelvinBer: (%, %) -> %

from SpecialFunctionCategory

kelvinKei: (%, %) -> %

from SpecialFunctionCategory

kelvinKer: (%, %) -> %

from SpecialFunctionCategory

krawtchoukK: (%, %, %, %) -> %

from SpecialFunctionCategory

kummerM: (%, %, %) -> %

from SpecialFunctionCategory

kummerU: (%, %, %) -> %

from SpecialFunctionCategory

laguerreL: (%, %, %) -> %

from SpecialFunctionCategory

lambertW: % -> %

from SpecialFunctionCategory

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

ldexp: (%, NemoInteger) -> %

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

legendreP: (%, %, %) -> %

from SpecialFunctionCategory

legendreQ: (%, %, %) -> %

from SpecialFunctionCategory

lerchPhi: (%, %, %) -> %

from SpecialFunctionCategory

lift: % -> SparseUnivariatePolynomial NemoArbField 256

from MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

log1p: % -> %

log: % -> %

from ElementaryFunctionCategory

lommelS1: (%, %, %) -> %

from SpecialFunctionCategory

lommelS2: (%, %, %) -> %

from SpecialFunctionCategory

lookup: % -> PositiveInteger if NemoArbField 256 has Finite

from Finite

map: (NemoArbField 256 -> NemoArbField 256, %) -> %

from FullyEvalableOver NemoArbField 256

meijerG: (List %, List %, List %, List %, %) -> %

from SpecialFunctionCategory

meixnerM: (%, %, %, %) -> %

from SpecialFunctionCategory

meixnerP: (%, %, %, %) -> %

from SpecialFunctionCategory

minimalPolynomial: % -> SparseUnivariatePolynomial NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JuliaObjectType

nextItem: % -> Union(%, failed) if NemoArbField 256 has FiniteFieldCategory

from StepThrough

norm: % -> NemoArbField 256

from ComplexCategory NemoArbField 256

nothing?: % -> Boolean

from JuliaObjectType

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger if NemoArbField 256 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

overlaps?: (%, %) -> Boolean

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if NemoArbField 256 has PatternMatchable Integer

from PatternMatchable Integer

pi: () -> %

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Fraction Integer

polarCoordinates: % -> Record(r: NemoArbField 256, phi: NemoArbField 256)

from ComplexCategory NemoArbField 256

polygamma: (%, %) -> %

from SpecialFunctionCategory

polylog: (%, %) -> %

from SpecialFunctionCategory

precision: () -> PositiveInteger

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> % if NemoArbField 256 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> % if NemoArbField 256 has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

primitiveElement: () -> % if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

racahR: (%, %, %, %, %, %) -> %

from SpecialFunctionCategory

random: () -> % if NemoArbField 256 has Finite

from Finite

rank: () -> PositiveInteger

from FramedModule NemoArbField 256

rational?: % -> Boolean if NemoArbField 256 has IntegerNumberSystem

from ComplexCategory NemoArbField 256

rational: % -> Fraction Integer if NemoArbField 256 has IntegerNumberSystem

from ComplexCategory NemoArbField 256

rationalIfCan: % -> Union(Fraction Integer, failed) if NemoArbField 256 has IntegerNumberSystem

from ComplexCategory NemoArbField 256

real: % -> NemoArbField 256

from ComplexCategory NemoArbField 256

recip: % -> Union(%, failed)

from MagmaWithUnit

reduce: Fraction SparseUnivariatePolynomial NemoArbField 256 -> Union(%, failed)

from MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

reduce: SparseUnivariatePolynomial NemoArbField 256 -> %

from MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if NemoArbField 256 has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix NemoArbField 256, vec: Vector NemoArbField 256)

from LinearlyExplicitOver NemoArbField 256

reducedSystem: Matrix % -> Matrix Integer if NemoArbField 256 has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix NemoArbField 256

from LinearlyExplicitOver NemoArbField 256

regularRepresentation: % -> Matrix NemoArbField 256

from FramedAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

regularRepresentation: (%, Vector %) -> Matrix NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic) if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

represents: (Vector NemoArbField 256, Vector %) -> %

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

represents: Vector NemoArbField 256 -> %

from FramedModule NemoArbField 256

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retract: % -> NemoArbField 256

from RetractableTo NemoArbField 256

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: % -> Union(NemoArbField 256, failed)

from RetractableTo NemoArbField 256

riemannZeta: % -> %

from SpecialFunctionCategory

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

rootOfUnity: NonNegativeInteger -> %

sample: %

from AbelianMonoid

sec: % -> %

from TrigonometricFunctionCategory

sech: % -> %

from HyperbolicFunctionCategory

sign: % -> %

from SpecialFunctionCategory

sin: % -> %

from TrigonometricFunctionCategory

sinh: % -> %

from HyperbolicFunctionCategory

size: () -> NonNegativeInteger if NemoArbField 256 has Finite

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if NemoArbField 256 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoArbField 256 has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

string: % -> String

from JuliaObjectType

struveH: (%, %) -> %

from SpecialFunctionCategory

struveL: (%, %) -> %

from SpecialFunctionCategory

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if NemoArbField 256 has FiniteFieldCategory

from FiniteFieldCategory

tan: % -> %

from TrigonometricFunctionCategory

tanh: % -> %

from HyperbolicFunctionCategory

trace: % -> NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

traceMatrix: () -> Matrix NemoArbField 256

from FramedAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

traceMatrix: Vector % -> Matrix NemoArbField 256

from FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

trim: % -> %

uniqueInteger: % -> Union(NemoInteger, failed)

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

unitStep: % -> %

from SpecialFunctionCategory

weberE: (%, %) -> %

from SpecialFunctionCategory

weierstrassP: (%, %, %) -> %

from SpecialFunctionCategory

weierstrassPInverse: (%, %, %) -> %

from SpecialFunctionCategory

weierstrassPPrime: (%, %, %) -> %

from SpecialFunctionCategory

weierstrassSigma: (%, %, %) -> %

from SpecialFunctionCategory

weierstrassZeta: (%, %, %) -> %

from SpecialFunctionCategory

whittakerM: (%, %, %) -> %

from SpecialFunctionCategory

whittakerW: (%, %, %) -> %

from SpecialFunctionCategory

wilsonW: (%, %, %, %, %, %) -> %

from SpecialFunctionCategory

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra NemoArbField 256

Approximate

arbitraryPrecision

ArcHyperbolicFunctionCategory

ArcTrigonometricFunctionCategory

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(NemoArbField 256, NemoArbField 256)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if NemoArbField 256 has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleFrom NemoArbField 256

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ComplexCategory NemoArbField 256

ConvertibleTo Complex DoubleFloat

ConvertibleTo Complex Float

ConvertibleTo InputForm if NemoArbField 256 has ConvertibleTo InputForm

ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if NemoArbField 256 has ConvertibleTo Pattern Integer

ConvertibleTo SparseUnivariatePolynomial NemoArbField 256

ConvertibleTo String

DifferentialExtension NemoArbField 256

DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(NemoArbField 256, %) if NemoArbField 256 has Eltable(NemoArbField 256, NemoArbField 256)

EntireRing

EuclideanDomain

Evalable NemoArbField 256 if NemoArbField 256 has Evalable NemoArbField 256

Field

FieldOfPrimeCharacteristic if NemoArbField 256 has FiniteFieldCategory

Finite if NemoArbField 256 has Finite

FiniteFieldCategory if NemoArbField 256 has FiniteFieldCategory

FiniteRankAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

FramedAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

FramedModule NemoArbField 256

FullyEvalableOver NemoArbField 256

FullyLinearlyExplicitOver NemoArbField 256

FullyPatternMatchable NemoArbField 256

FullyRetractableTo NemoArbField 256

GcdDomain

Hashable if NemoArbField 256 has Hashable

HyperbolicFunctionCategory

InnerEvalable(NemoArbField 256, NemoArbField 256) if NemoArbField 256 has Evalable NemoArbField 256

InnerEvalable(Symbol, NemoArbField 256) if NemoArbField 256 has InnerEvalable(Symbol, NemoArbField 256)

IntegralDomain

JuliaArbitraryPrecision

JuliaObjectRing

JuliaObjectType

JuliaRing

JuliaType

LeftModule %

LeftModule Fraction Integer

LeftModule NemoArbField 256

LeftOreRing

LinearlyExplicitOver Integer if NemoArbField 256 has LinearlyExplicitOver Integer

LinearlyExplicitOver NemoArbField 256

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module NemoArbField 256

MonogenicAlgebra(NemoArbField 256, SparseUnivariatePolynomial NemoArbField 256)

Monoid

multiplicativeValuation if NemoArbField 256 has IntegerNumberSystem

NemoRing

NemoType

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra NemoArbField 256

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PartialDifferentialRing Symbol if NemoArbField 256 has PartialDifferentialRing Symbol

Patternable NemoArbField 256

PatternMatchable Float

PatternMatchable Integer if NemoArbField 256 has PatternMatchable Integer

PolynomialFactorizationExplicit if NemoArbField 256 has PolynomialFactorizationExplicit

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo NemoArbField 256

RightModule %

RightModule Fraction Integer

RightModule Integer if NemoArbField 256 has LinearlyExplicitOver Integer

RightModule NemoArbField 256

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

SpecialFunctionCategory

StepThrough if NemoArbField 256 has FiniteFieldCategory

TranscendentalFunctionCategory

TrigonometricFunctionCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown