NemoComplexField¶
jnball.spad line 857 [edit on github]
NemoComplexField implements arbitrary precision ball arithmetic using the Nemo Julia package.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
*: (%, Integer) -> %
- *: (%, NemoRealField) -> %
from RightModule NemoRealField
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NemoRealField, %) -> %
from LeftModule NemoRealField
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
/: (%, Integer) -> %
/: (Integer, %) -> %
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
- accuracyBits: % -> JuliaInt64
accuracyBits(x)
returns the relative accuracy ofx
in bits.
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- airyAi: % -> %
- airyAiPrime: % -> %
- airyBi: % -> %
- airyBiPrime: % -> %
- angerJ: (%, %) -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> NemoRealField
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atanh: % -> %
- besselI: (%, %) -> %
- besselJ: (%, %) -> %
- besselK: (%, %) -> %
- besselY: (%, %) -> %
- ceiling: % -> %
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- charlierC: (%, %, %) -> %
- charthRoot: % -> % if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if NemoRealField has CharacteristicNonZero or % has CharacteristicNonZero and NemoRealField has PolynomialFactorizationExplicit
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: Float -> %
coerce: JuliaFloat64 -> %
coerce: NemoAlgebraicNumber -> %
- coerce: NemoRealField -> %
coerce: String -> %
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (NemoRealField, NemoRealField) -> %
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and NemoRealField has PolynomialFactorizationExplicit or NemoRealField has FiniteFieldCategory
- conjugate: % -> %
- contains?: (%, %) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- contains?: (%, NemoInteger) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- contains?: (%, NemoRational) -> Boolean
contains?(x,y)
checks whether or noty
is contained inx
.
- containsZero?: % -> Boolean
containsZero?(x)
checks whether or not 0 is contained inx
.
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm if NemoRealField has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if NemoRealField has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial NemoRealField
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector NemoRealField
- convert: SparseUnivariatePolynomial NemoRealField -> %
from MonogenicAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- convert: Vector NemoRealField -> %
- coordinates: % -> Vector NemoRealField
- coordinates: (%, Vector %) -> Vector NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- coordinates: (Vector %, Vector %) -> Matrix NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- coordinates: Vector % -> Matrix NemoRealField
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, List Symbol) -> % if NemoRealField has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if NemoRealField has PartialDifferentialRing Symbol
- D: (%, NemoRealField -> NemoRealField) -> %
- D: (%, NemoRealField -> NemoRealField, NonNegativeInteger) -> %
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if NemoRealField has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if NemoRealField has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial NemoRealField
from MonogenicAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- derivationCoordinates: (Vector %, NemoRealField -> NemoRealField) -> Matrix NemoRealField
from MonogenicAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, List Symbol) -> % if NemoRealField has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if NemoRealField has PartialDifferentialRing Symbol
- differentiate: (%, NemoRealField -> NemoRealField) -> %
- differentiate: (%, NemoRealField -> NemoRealField, NonNegativeInteger) -> %
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if NemoRealField has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if NemoRealField has PartialDifferentialRing Symbol
- digamma: % -> %
- diracDelta: % -> %
- discreteLog: % -> NonNegativeInteger if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if NemoRealField has FiniteFieldCategory
- discriminant: () -> NemoRealField
from FramedAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- discriminant: Vector % -> NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- ellipticF: (%, %) -> %
- ellipticK: % -> %
- ellipticPi: (%, %, %) -> %
- elt: (%, NemoRealField) -> % if NemoRealField has Eltable(NemoRealField, NemoRealField)
from Eltable(NemoRealField, %)
- enumerate: () -> List % if NemoRealField has Finite
from Finite
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation NemoRealField) -> % if NemoRealField has Evalable NemoRealField
from Evalable NemoRealField
- eval: (%, List Equation NemoRealField) -> % if NemoRealField has Evalable NemoRealField
from Evalable NemoRealField
- eval: (%, List NemoRealField, List NemoRealField) -> % if NemoRealField has Evalable NemoRealField
- eval: (%, List Symbol, List NemoRealField) -> % if NemoRealField has InnerEvalable(Symbol, NemoRealField)
from InnerEvalable(Symbol, NemoRealField)
- eval: (%, NemoRealField, NemoRealField) -> % if NemoRealField has Evalable NemoRealField
- eval: (%, Symbol, NemoRealField) -> % if NemoRealField has InnerEvalable(Symbol, NemoRealField)
from InnerEvalable(Symbol, NemoRealField)
- exact?: % -> Boolean
exact?(x)
checks whetherx
is exact i.e. with 0 radius.
- exp1: () -> %
exp() returns the NemoComplexField
ℯ
(exp(1)).
- exp: % -> %
- exp: () -> %
exp()
returns the NemoComplexFieldℯ
(exp(1)).
- expm1: % -> %
expm1(x)
computes accurately e^x-1. It avoids the loss of precision involved in the direct evaluation of exp(x
)-1
for small values ofx
.
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, NemoRealField) -> Union(%, failed)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoRealField has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoRealField has PolynomialFactorizationExplicit
- finite?: % -> Boolean
finite?(x)
checks whether or notx
is finite, not an infinity for example.
- floor: % -> %
- fractionPart: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- guess: (%, NonNegativeInteger) -> NemoAlgebraicNumber
guess(a, deg)
returns the reconstructed algebraic number found if it succeeds. Up to degree deg.
- hahn_p: (%, %, %, %, %) -> %
- hahnQ: (%, %, %, %, %) -> %
- hahnR: (%, %, %, %, %) -> %
- hahnS: (%, %, %, %, %) -> %
- hankelH1: (%, %) -> %
- hankelH2: (%, %) -> %
- hash: % -> SingleInteger if NemoRealField has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if NemoRealField has Hashable
from Hashable
- hermiteH: (%, %) -> %
- hurwitzZeta: (%, %) -> %
hurwitzZeta(s,a)
returns the Hurwitz zeta function ofs
and a.
- hypergeometric1F1: (%, %, %) -> %
hypergeometric1F1(a,b,z)
is the confluent hypergeometric function 1F1.
- hypergeometric1F1Regularized: (%, %, %) -> %
hypergeometric1F1Regularized(a,b,z)
is the regularized confluent hypergeometric function 1F1.
- hypergeometricF: (List %, List %, %) -> %
- hypergeometricU: (%, %, %) -> %
hypergeometricU(a,b,x)
is the confluent hypergeometric functionU
.
- imag: % -> NemoRealField
- imaginary: () -> %
- index: PositiveInteger -> % if NemoRealField has Finite
from Finite
- init: % if NemoRealField has FiniteFieldCategory
from StepThrough
- integer?: % -> Boolean
integer?(x)
checks whether or notx
is an integer.
- inv: % -> %
from DivisionRing
- jacobiCn: (%, %) -> %
- jacobiDn: (%, %) -> %
- jacobiP: (%, %, %, %) -> %
- jacobiSn: (%, %) -> %
- jacobiTheta: (%, %) -> %
- jacobiZeta: (%, %) -> %
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlId: % -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
jncf: Float -> %
jncf: Integer -> %
jncf: String -> %
- kelvinBei: (%, %) -> %
- kelvinBer: (%, %) -> %
- kelvinKei: (%, %) -> %
- kelvinKer: (%, %) -> %
- krawtchoukK: (%, %, %, %) -> %
- kummerM: (%, %, %) -> %
- kummerU: (%, %, %) -> %
- laguerreL: (%, %, %) -> %
- lambertW: % -> %
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- ldexp: (%, NemoInteger) -> %
ldexp(x, n)
returnsx
* 2^n.
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- legendreP: (%, %, %) -> %
- legendreQ: (%, %, %) -> %
- lerchPhi: (%, %, %) -> %
- lift: % -> SparseUnivariatePolynomial NemoRealField
from MonogenicAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- log1p: % -> %
log1p(x)
logarithm of 1+x computed accurately.
- log: % -> %
- lommelS1: (%, %, %) -> %
- lommelS2: (%, %, %) -> %
- lookup: % -> PositiveInteger if NemoRealField has Finite
from Finite
- map: (NemoRealField -> NemoRealField, %) -> %
- meixnerM: (%, %, %, %) -> %
- meixnerP: (%, %, %, %) -> %
- minimalPolynomial: % -> SparseUnivariatePolynomial NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- nextItem: % -> Union(%, failed) if NemoRealField has FiniteFieldCategory
from StepThrough
- norm: % -> NemoRealField
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if NemoRealField has FiniteFieldCategory
- order: % -> PositiveInteger if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- overlaps?: (%, %) -> Boolean
overlaps?(x,y)
checks whether or not any part ofx
andy
balls overlaps.
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if NemoRealField has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
pi()
returns the JuliaFloat representation ofπ
.
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: NemoRealField, phi: NemoRealField)
- polygamma: (%, %) -> %
- polylog: (%, %) -> %
precision: () -> PositiveInteger
precision: PositiveInteger -> PositiveInteger
- primeFrobenius: % -> % if NemoRealField has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if NemoRealField has FiniteFieldCategory
- primitive?: % -> Boolean if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- racahR: (%, %, %, %, %, %) -> %
- random: () -> % if NemoRealField has Finite
from Finite
- rank: () -> PositiveInteger
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- rational?: % -> Boolean if NemoRealField has IntegerNumberSystem
- rational: % -> Fraction Integer if NemoRealField has IntegerNumberSystem
- rationalIfCan: % -> Union(Fraction Integer, failed) if NemoRealField has IntegerNumberSystem
- real: % -> NemoRealField
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial NemoRealField -> Union(%, failed)
from MonogenicAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- reduce: SparseUnivariatePolynomial NemoRealField -> %
from MonogenicAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if NemoRealField has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix NemoRealField, vec: Vector NemoRealField)
- reducedSystem: Matrix % -> Matrix Integer if NemoRealField has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix NemoRealField
- regularRepresentation: % -> Matrix NemoRealField
from FramedAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- regularRepresentation: (%, Vector %) -> Matrix NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector NemoRealField, Vector %) -> %
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- represents: Vector NemoRealField -> %
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> NemoRealField
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(NemoRealField, failed)
- riemannZeta: % -> %
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- rootOfUnity: (NonNegativeInteger, Integer) -> %
rootOfUnity(n,k)
Return the root of unity exp(2*%pi*%i*k/n).
- rootOfUnity: NonNegativeInteger -> %
rootOfUnity(n)
Return the root of unity exp(2*%pi*%i/n).
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- sign: % -> %
- sin: % -> %
- sinh: % -> %
- size: () -> NonNegativeInteger if NemoRealField has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if NemoRealField has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if NemoRealField has PolynomialFactorizationExplicit
- string: % -> String
from JuliaObjectType
- struveH: (%, %) -> %
- struveL: (%, %) -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if NemoRealField has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- trace: % -> NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- traceMatrix: () -> Matrix NemoRealField
from FramedAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- traceMatrix: Vector % -> Matrix NemoRealField
from FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
- trim: % -> %
trim(x)
rounds off insignificant bits from the midpoint.
- uniqueInteger: % -> Union(NemoInteger, failed)
uniqueInteger(x)
returns a NemoInteger if there is a unique integer in the intervalx
, “failed” otherwise.
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- unitStep: % -> %
- weberE: (%, %) -> %
- weierstrassP: (%, %, %) -> %
- weierstrassPInverse: (%, %, %) -> %
- weierstrassPPrime: (%, %, %) -> %
- weierstrassSigma: (%, %, %) -> %
- weierstrassZeta: (%, %, %) -> %
- whittakerM: (%, %, %) -> %
- whittakerW: (%, %, %) -> %
- wilsonW: (%, %, %, %, %, %) -> %
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(NemoRealField, NemoRealField)
CharacteristicNonZero if NemoRealField has CharacteristicNonZero
CoercibleFrom Fraction Integer
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if NemoRealField has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if NemoRealField has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial NemoRealField
DifferentialExtension NemoRealField
Eltable(NemoRealField, %) if NemoRealField has Eltable(NemoRealField, NemoRealField)
Evalable NemoRealField if NemoRealField has Evalable NemoRealField
FieldOfPrimeCharacteristic if NemoRealField has FiniteFieldCategory
Finite if NemoRealField has Finite
FiniteFieldCategory if NemoRealField has FiniteFieldCategory
FiniteRankAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
FramedAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
FullyEvalableOver NemoRealField
FullyLinearlyExplicitOver NemoRealField
FullyPatternMatchable NemoRealField
FullyRetractableTo NemoRealField
Hashable if NemoRealField has Hashable
InnerEvalable(NemoRealField, NemoRealField) if NemoRealField has Evalable NemoRealField
InnerEvalable(Symbol, NemoRealField) if NemoRealField has InnerEvalable(Symbol, NemoRealField)
LinearlyExplicitOver Integer if NemoRealField has LinearlyExplicitOver Integer
LinearlyExplicitOver NemoRealField
Module %
MonogenicAlgebra(NemoRealField, SparseUnivariatePolynomial NemoRealField)
multiplicativeValuation if NemoRealField has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra NemoRealField
PartialDifferentialRing Symbol if NemoRealField has PartialDifferentialRing Symbol
PatternMatchable Integer if NemoRealField has PatternMatchable Integer
PolynomialFactorizationExplicit if NemoRealField has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if NemoRealField has LinearlyExplicitOver Integer
StepThrough if NemoRealField has FiniteFieldCategory