JuliaComplexFloatΒΆ
jobject.spad line 954 [edit on github]
JuliaFComplexloat implements arbitrary precision floating point arithmetic for complex numbers using Julia BigFloats (MPFR based). https://www.mpfr.org/
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
*: (%, Integer) -> %
- *: (%, JuliaFloat) -> %
from RightModule JuliaFloat
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (JuliaFloat, %) -> %
from LeftModule JuliaFloat
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
/: (%, Integer) -> %
/: (Integer, %) -> %
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> JuliaFloat
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
atan(x)
computes the inverse tangent ofx
.
- atan: (%, %) -> %
atan(x, y)
computes the inverse tangent of x/y.
- atanh: % -> %
- basis: () -> Vector %
from FramedModule JuliaFloat
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaFloat
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- charthRoot: % -> % if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and JuliaFloat has PolynomialFactorizationExplicit or JuliaFloat has CharacteristicNonZero
- cis: % -> %
cis(x)
returns exp(%i*x) computed efficiently.
- cispi: % -> %
cispi(x)
returns cis(%pi*x) computed efficiently.
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
coerce: Float -> %
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JuliaFloat -> %
from CoercibleFrom JuliaFloat
coerce: JuliaFloat64 -> %
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (JuliaFloat, JuliaFloat) -> %
- conditionP: Matrix % -> Union(Vector %, failed) if JuliaFloat has FiniteFieldCategory or % has CharacteristicNonZero and JuliaFloat has PolynomialFactorizationExplicit
- conjugate: % -> %
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if JuliaFloat has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial JuliaFloat
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector JuliaFloat
from FramedModule JuliaFloat
- convert: SparseUnivariatePolynomial JuliaFloat -> %
from MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- convert: Vector JuliaFloat -> %
from FramedModule JuliaFloat
- coordinates: % -> Vector JuliaFloat
from FramedModule JuliaFloat
- coordinates: (%, Vector %) -> Vector JuliaFloat
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- coordinates: (Vector %, Vector %) -> Matrix JuliaFloat
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- coordinates: Vector % -> Matrix JuliaFloat
from FramedModule JuliaFloat
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, JuliaFloat -> JuliaFloat) -> %
- D: (%, JuliaFloat -> JuliaFloat, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if JuliaFloat has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if JuliaFloat has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial JuliaFloat
from MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- derivationCoordinates: (Vector %, JuliaFloat -> JuliaFloat) -> Matrix JuliaFloat
from MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, JuliaFloat -> JuliaFloat) -> %
- differentiate: (%, JuliaFloat -> JuliaFloat, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if JuliaFloat has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaFloat has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if JuliaFloat has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaFloat has PartialDifferentialRing Symbol
- discreteLog: % -> NonNegativeInteger if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaFloat has FiniteFieldCategory
- discriminant: () -> JuliaFloat
from FramedAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- discriminant: Vector % -> JuliaFloat
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (%, JuliaFloat) -> % if JuliaFloat has Eltable(JuliaFloat, JuliaFloat)
from Eltable(JuliaFloat, %)
- enumerate: () -> List % if JuliaFloat has Finite
from Finite
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation JuliaFloat) -> % if JuliaFloat has Evalable JuliaFloat
from Evalable JuliaFloat
- eval: (%, JuliaFloat, JuliaFloat) -> % if JuliaFloat has Evalable JuliaFloat
from InnerEvalable(JuliaFloat, JuliaFloat)
- eval: (%, List Equation JuliaFloat) -> % if JuliaFloat has Evalable JuliaFloat
from Evalable JuliaFloat
- eval: (%, List JuliaFloat, List JuliaFloat) -> % if JuliaFloat has Evalable JuliaFloat
from InnerEvalable(JuliaFloat, JuliaFloat)
- eval: (%, List Symbol, List JuliaFloat) -> % if JuliaFloat has InnerEvalable(Symbol, JuliaFloat)
from InnerEvalable(Symbol, JuliaFloat)
- eval: (%, Symbol, JuliaFloat) -> % if JuliaFloat has InnerEvalable(Symbol, JuliaFloat)
from InnerEvalable(Symbol, JuliaFloat)
- exp10: % -> %
exp10(x)
computes the base 10 exponential ofx
.
- exp1: () -> %
exp1()
returns the JuliaComplexFloatβ―
(%e
or exp(1)).
- exp2: % -> %
exp2(x)
computes the base 2 exponential ofx
.
- exp: % -> %
- exp: () -> %
exp()
returns the JuliaComplexFloatβ―
(%e
or exp(1)).
- expm1: % -> %
expm1(x)
computes accuratelyβ―^x
-1. It avoids the loss of precision involved in the direct evaluation of exp(x
)-1
for small values ofx
.
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, JuliaFloat) -> Union(%, failed)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat has PolynomialFactorizationExplicit
- finite?: % -> Boolean
finite?(x)
tests whether or notx
is finite.
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- hash: % -> SingleInteger if JuliaFloat has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if JuliaFloat has Hashable
from Hashable
- imag: % -> JuliaFloat
- imaginary: () -> %
- index: PositiveInteger -> % if JuliaFloat has Finite
from Finite
- init: % if JuliaFloat has FiniteFieldCategory
from StepThrough
- integer?: % -> Boolean
integer?(x)
tests whether or notx
is an integer.
- inv: % -> %
from DivisionRing
jcfloat: Float -> %
jcfloat: Fraction Integer -> %
jcfloat: Integer -> %
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlApprox?: (%, %) -> Boolean
jlApprox?(x,y)
computes inexact equality comparison with default parameters. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds.
- jlApprox?: (%, %, %) -> Boolean
jlApprox?(x,y,atol)
computes inexact equality comparison with absolute toleranceatol
. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds.
- jlId: % -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lift: % -> SparseUnivariatePolynomial JuliaFloat
from MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- log10: % -> %
log10(x)
computes the base 10 logarithm ofx
.
- log1p: % -> %
log1p(x)
computes accurately log(1+x)
- log2: % -> %
log2(x)
computes the base 2 logarithm ofx
.
- log: % -> %
- lookup: % -> PositiveInteger if JuliaFloat has Finite
from Finite
- map: (JuliaFloat -> JuliaFloat, %) -> %
- minimalPolynomial: % -> SparseUnivariatePolynomial JuliaFloat
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- nextItem: % -> Union(%, failed) if JuliaFloat has FiniteFieldCategory
from StepThrough
- norm: % -> JuliaFloat
- nothing?: % -> Boolean
from JuliaObjectType
- nrand: () -> %
nrand()
returns an normally distributed random number.
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if JuliaFloat has FiniteFieldCategory
- order: % -> PositiveInteger if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaFloat has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: JuliaFloat, phi: JuliaFloat)
- precision: % -> PositiveInteger
precision(x)
returns the precision ofx
.
- precision: (%, PositiveInteger) -> %
precision(x, p)
returns a copy ofx
with precisionp
.
- primeFrobenius: % -> % if JuliaFloat has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if JuliaFloat has FiniteFieldCategory
- primitive?: % -> Boolean if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- random: () -> % if JuliaFloat has Finite
from Finite
- rank: () -> PositiveInteger
from FramedModule JuliaFloat
- rational?: % -> Boolean if JuliaFloat has IntegerNumberSystem
- rational: % -> Fraction Integer if JuliaFloat has IntegerNumberSystem
- rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaFloat has IntegerNumberSystem
- real?: % -> Boolean
real?(x)
tests whether or notx
is real.
- real: % -> JuliaFloat
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial JuliaFloat -> Union(%, failed)
from MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- reduce: SparseUnivariatePolynomial JuliaFloat -> %
from MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaFloat has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaFloat, vec: Vector JuliaFloat)
- reducedSystem: Matrix % -> Matrix Integer if JuliaFloat has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaFloat
- regularRepresentation: % -> Matrix JuliaFloat
from FramedAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- regularRepresentation: (%, Vector %) -> Matrix JuliaFloat
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector JuliaFloat, Vector %) -> %
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- represents: Vector JuliaFloat -> %
from FramedModule JuliaFloat
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> JuliaFloat
from RetractableTo JuliaFloat
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(JuliaFloat, failed)
from RetractableTo JuliaFloat
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- sin: % -> %
- sinh: % -> %
- size: () -> NonNegativeInteger if JuliaFloat has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaFloat has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaFloat has PolynomialFactorizationExplicit
- string: % -> String
string(fl)
return the strings representation offl
.
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaFloat has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- traceMatrix: () -> Matrix JuliaFloat
from FramedAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- traceMatrix: Vector % -> Matrix JuliaFloat
from FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()
returns an uniformly distributed random number contained in [0,1].
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JuliaFloat, JuliaFloat)
CharacteristicNonZero if JuliaFloat has CharacteristicNonZero
CoercibleFrom Fraction Integer
ConvertibleTo Complex DoubleFloat
ConvertibleTo Pattern Integer if JuliaFloat has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial JuliaFloat
DifferentialExtension JuliaFloat
Eltable(JuliaFloat, %) if JuliaFloat has Eltable(JuliaFloat, JuliaFloat)
Evalable JuliaFloat if JuliaFloat has Evalable JuliaFloat
FieldOfPrimeCharacteristic if JuliaFloat has FiniteFieldCategory
Finite if JuliaFloat has Finite
FiniteFieldCategory if JuliaFloat has FiniteFieldCategory
FiniteRankAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
FramedAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
FullyLinearlyExplicitOver JuliaFloat
FullyPatternMatchable JuliaFloat
Hashable if JuliaFloat has Hashable
InnerEvalable(JuliaFloat, JuliaFloat) if JuliaFloat has Evalable JuliaFloat
InnerEvalable(Symbol, JuliaFloat) if JuliaFloat has InnerEvalable(Symbol, JuliaFloat)
LinearlyExplicitOver Integer if JuliaFloat has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaFloat
Module %
MonogenicAlgebra(JuliaFloat, SparseUnivariatePolynomial JuliaFloat)
multiplicativeValuation if JuliaFloat has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JuliaFloat
PartialDifferentialRing Symbol if JuliaFloat has PartialDifferentialRing Symbol
PatternMatchable Integer if JuliaFloat has PatternMatchable Integer
PolynomialFactorizationExplicit if JuliaFloat has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if JuliaFloat has LinearlyExplicitOver Integer
StepThrough if JuliaFloat has FiniteFieldCategory