JuliaWSAPComplex precΒΆ

jws.spad line 1332 [edit on github]

Julia Wolfram Symbolic arbitrary precision complex numbers using Wolfram Symbolic Transport Protocol.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> % if JuliaWSAPReal prec has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, JuliaWSAPReal prec) -> %

from RightModule JuliaWSAPReal prec

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (JuliaWSAPReal prec, %) -> %

from LeftModule JuliaWSAPReal prec

*: (JuliaWSInteger, %) -> %

n * z multiplies n by z.

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from ComplexCategory JuliaWSAPReal prec

acos: % -> %

from ArcTrigonometricFunctionCategory

acosh: % -> %

from ArcHyperbolicFunctionCategory

acot: % -> %

from ArcTrigonometricFunctionCategory

acoth: % -> %

from ArcHyperbolicFunctionCategory

acsc: % -> %

from ArcTrigonometricFunctionCategory

acsch: % -> %

from ArcHyperbolicFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

argument: % -> JuliaWSAPReal prec

from ComplexCategory JuliaWSAPReal prec

asec: % -> %

from ArcTrigonometricFunctionCategory

asech: % -> %

from ArcHyperbolicFunctionCategory

asin: % -> %

from ArcTrigonometricFunctionCategory

asinh: % -> %

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> %

from ArcTrigonometricFunctionCategory

atan: (%, %) -> %

atan(z1,z2) computes the arc tangent of z2/z1.

atanh: % -> %

from ArcHyperbolicFunctionCategory

basis: () -> Vector %

from FramedModule JuliaWSAPReal prec

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

charthRoot: % -> % if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

charthRoot: % -> Union(%, failed) if JuliaWSAPReal prec has CharacteristicNonZero or % has CharacteristicNonZero and JuliaWSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

Chi: % -> %

from LiouvillianFunctionCategory

Ci: % -> %

from LiouvillianFunctionCategory

coerce: % -> %

from Algebra %

coerce: % -> JuliaWSExpression

coerce(cplx) coerces cplx. Convenience function.

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Complex Integer -> %

coerce(gi) coerces gi. Convenience function.

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

coerce(i): convenience function.

coerce: JuliaWSAPReal prec -> %

from Algebra JuliaWSAPReal prec

coerce: JuliaWSInteger -> %

coerce(int): coerces int. Convenience function.

commutator: (%, %) -> %

from NonAssociativeRng

complex: (JuliaWSAPReal prec, JuliaWSAPReal prec) -> %

complex(re, im) returns the complex number from real part re and imaginary part im.

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaWSAPReal prec has PolynomialFactorizationExplicit or JuliaWSAPReal prec has FiniteFieldCategory

from PolynomialFactorizationExplicit

conjugate: % -> %

from ComplexCategory JuliaWSAPReal prec

convert: % -> Complex DoubleFloat

from ConvertibleTo Complex DoubleFloat

convert: % -> Complex Float

from ConvertibleTo Complex Float

convert: % -> InputForm if JuliaWSAPReal prec has ConvertibleTo InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if JuliaWSAPReal prec has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> SparseUnivariatePolynomial JuliaWSAPReal prec

from ConvertibleTo SparseUnivariatePolynomial JuliaWSAPReal prec

convert: % -> String

from ConvertibleTo String

convert: % -> Vector JuliaWSAPReal prec

from FramedModule JuliaWSAPReal prec

convert: SparseUnivariatePolynomial JuliaWSAPReal prec -> %

from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

convert: Vector JuliaWSAPReal prec -> %

from FramedModule JuliaWSAPReal prec

coordinates: % -> Vector JuliaWSAPReal prec

from FramedModule JuliaWSAPReal prec

coordinates: (%, Vector %) -> Vector JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

coordinates: (Vector %, Vector %) -> Matrix JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

coordinates: Vector % -> Matrix JuliaWSAPReal prec

from FramedModule JuliaWSAPReal prec

cos: % -> %

from TrigonometricFunctionCategory

cosh: % -> %

from HyperbolicFunctionCategory

cot: % -> %

from TrigonometricFunctionCategory

coth: % -> %

from HyperbolicFunctionCategory

createPrimitiveElement: () -> % if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

csc: % -> %

from TrigonometricFunctionCategory

csch: % -> %

from HyperbolicFunctionCategory

D: % -> %

from DifferentialRing

D: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec) -> %

from DifferentialExtension JuliaWSAPReal prec

D: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec, NonNegativeInteger) -> %

from DifferentialExtension JuliaWSAPReal prec

D: (%, List Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> %

from DifferentialRing

D: (%, Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

definingPolynomial: () -> SparseUnivariatePolynomial JuliaWSAPReal prec

from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

derivationCoordinates: (Vector %, JuliaWSAPReal prec -> JuliaWSAPReal prec) -> Matrix JuliaWSAPReal prec

from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

differentiate: % -> %

from DifferentialRing

differentiate: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec) -> %

from DifferentialExtension JuliaWSAPReal prec

differentiate: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec, NonNegativeInteger) -> %

from DifferentialExtension JuliaWSAPReal prec

differentiate: (%, List Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: (%, Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

dilog: % -> %

from LiouvillianFunctionCategory

discreteLog: % -> NonNegativeInteger if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaWSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

discriminant: () -> JuliaWSAPReal prec

from FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

discriminant: Vector % -> JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

Ei: % -> %

from LiouvillianFunctionCategory

elt: (%, JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Eltable(JuliaWSAPReal prec, JuliaWSAPReal prec)

from Eltable(JuliaWSAPReal prec, %)

enumerate: () -> List % if JuliaWSAPReal prec has Finite

from Finite

erf: % -> %

from LiouvillianFunctionCategory

erf: (%, %) -> %

erf(z) the error function of z.

erfc: % -> %

erfc(z) returns the complementary error function of z.

erfi: % -> %

from LiouvillianFunctionCategory

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec

from Evalable JuliaWSAPReal prec

eval: (%, JuliaWSAPReal prec, JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec

from InnerEvalable(JuliaWSAPReal prec, JuliaWSAPReal prec)

eval: (%, List Equation JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec

from Evalable JuliaWSAPReal prec

eval: (%, List JuliaWSAPReal prec, List JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec

from InnerEvalable(JuliaWSAPReal prec, JuliaWSAPReal prec)

eval: (%, List Symbol, List JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has InnerEvalable(Symbol, JuliaWSAPReal prec)

from InnerEvalable(Symbol, JuliaWSAPReal prec)

eval: (%, Symbol, JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has InnerEvalable(Symbol, JuliaWSAPReal prec)

from InnerEvalable(Symbol, JuliaWSAPReal prec)

exp: % -> %

from ElementaryFunctionCategory

exp: () -> %

exp() returns the JuliaWSAPReal β„― (%e or exp(1)).

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

exquo: (%, JuliaWSAPReal prec) -> Union(%, failed)

from ComplexCategory JuliaWSAPReal prec

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

fresnelC: % -> %

from LiouvillianFunctionCategory

fresnelS: % -> %

from LiouvillianFunctionCategory

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

generator: () -> %

from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

hash: % -> SingleInteger if JuliaWSAPReal prec has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if JuliaWSAPReal prec has Hashable

from Hashable

imag: % -> JuliaWSAPReal prec

from ComplexCategory JuliaWSAPReal prec

imaginary: () -> %

from ComplexCategory JuliaWSAPReal prec

index: PositiveInteger -> % if JuliaWSAPReal prec has Finite

from Finite

init: % if JuliaWSAPReal prec has FiniteFieldCategory

from StepThrough

integral: (%, SegmentBinding %) -> %

from PrimitiveFunctionCategory

integral: (%, Symbol) -> %

from PrimitiveFunctionCategory

inv: % -> %

from DivisionRing

jlAbout: % -> Void

from JuliaObjectType

jlApply: (String, %) -> %

from JuliaObjectType

jlApply: (String, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %, %) -> %

from JuliaObjectType

jlApprox?: (%, %) -> Boolean

jlApprox?(x,y) computes inexact equality comparison with WS default parameters (Equal).

jlEval: % -> %

from JuliaWSObject

jlHead: % -> JuliaWSSymbol

from JuliaWSObject

jlId: % -> String

from JuliaObjectType

jlNumeric: % -> %

from JuliaWSObject

jlNumeric: (%, PositiveInteger) -> %

from JuliaWSObject

jlRef: % -> SExpression

from JuliaObjectType

jlref: String -> %

from JuliaObjectType

jlSymbolic: % -> String

from JuliaWSObject

jlType: % -> String

from JuliaObjectType

jWSComplex: (JuliaWSAPReal prec, JuliaWSAPReal prec) -> %

jWSComplex(re, im) constructs a JuliaWSComplex from real part re and imaginary part im.

jWSComplex: JuliaWSAPReal prec -> %

jWSComplex(re) constructs a JuliaWSComplex with real part re.

jWSInterpret: (String, String) -> %

from JuliaWSObject

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

li: % -> %

from LiouvillianFunctionCategory

lift: % -> SparseUnivariatePolynomial JuliaWSAPReal prec

from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

log10: % -> %

log10(z) compute logarithm of z in base 10.

log2: % -> %

log2(z) compute logarithm of z in base 2.

log: % -> %

from ElementaryFunctionCategory

lookup: % -> PositiveInteger if JuliaWSAPReal prec has Finite

from Finite

map: (JuliaWSAPReal prec -> JuliaWSAPReal prec, %) -> %

from FullyEvalableOver JuliaWSAPReal prec

minimalPolynomial: % -> SparseUnivariatePolynomial JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JuliaObjectType

nextItem: % -> Union(%, failed) if JuliaWSAPReal prec has FiniteFieldCategory

from StepThrough

norm: % -> JuliaWSAPReal prec

from ComplexCategory JuliaWSAPReal prec

nothing?: % -> Boolean

from JuliaObjectType

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from JuliaRing

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger if JuliaWSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaWSAPReal prec has PatternMatchable Integer

from PatternMatchable Integer

pi: () -> %

from TranscendentalFunctionCategory

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Fraction Integer

polarCoordinates: % -> Record(r: JuliaWSAPReal prec, phi: JuliaWSAPReal prec)

from ComplexCategory JuliaWSAPReal prec

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> % if JuliaWSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> % if JuliaWSAPReal prec has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

primitiveElement: () -> % if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: () -> % if JuliaWSAPReal prec has Finite

from Finite

rank: () -> PositiveInteger

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

rational?: % -> Boolean if JuliaWSAPReal prec has IntegerNumberSystem

from ComplexCategory JuliaWSAPReal prec

rational: % -> Fraction Integer if JuliaWSAPReal prec has IntegerNumberSystem

from ComplexCategory JuliaWSAPReal prec

rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaWSAPReal prec has IntegerNumberSystem

from ComplexCategory JuliaWSAPReal prec

real: % -> JuliaWSAPReal prec

from ComplexCategory JuliaWSAPReal prec

recip: % -> Union(%, failed)

from MagmaWithUnit

reduce: Fraction SparseUnivariatePolynomial JuliaWSAPReal prec -> Union(%, failed)

from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

reduce: SparseUnivariatePolynomial JuliaWSAPReal prec -> %

from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaWSAPReal prec has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaWSAPReal prec, vec: Vector JuliaWSAPReal prec)

from LinearlyExplicitOver JuliaWSAPReal prec

reducedSystem: Matrix % -> Matrix Integer if JuliaWSAPReal prec has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix JuliaWSAPReal prec

from LinearlyExplicitOver JuliaWSAPReal prec

regularRepresentation: % -> Matrix JuliaWSAPReal prec

from FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

regularRepresentation: (%, Vector %) -> Matrix JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

represents: (Vector JuliaWSAPReal prec, Vector %) -> %

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

represents: Vector JuliaWSAPReal prec -> %

from FramedModule JuliaWSAPReal prec

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retract: % -> JuliaWSAPReal prec

from RetractableTo JuliaWSAPReal prec

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: % -> Union(JuliaWSAPReal prec, failed)

from RetractableTo JuliaWSAPReal prec

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sec: % -> %

from TrigonometricFunctionCategory

sech: % -> %

from HyperbolicFunctionCategory

Shi: % -> %

from LiouvillianFunctionCategory

Si: % -> %

from LiouvillianFunctionCategory

sin: % -> %

from TrigonometricFunctionCategory

sinc: % -> %

sinc(z) compues the unormalized sinc of z, sin(z)/z and 0 if z = 0.

sinh: % -> %

from HyperbolicFunctionCategory

size: () -> NonNegativeInteger if JuliaWSAPReal prec has Finite

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaWSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSAPReal prec has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

string: % -> String

from JuliaObjectType

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaWSAPReal prec has FiniteFieldCategory

from FiniteFieldCategory

tan: % -> %

from TrigonometricFunctionCategory

tanh: % -> %

from HyperbolicFunctionCategory

toString: % -> String

from JuliaWSObject

toString: (%, JuliaWSExpression) -> String

toString(expr, form) returns the string representation of expr with WS language format form.

trace: % -> JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

traceMatrix: () -> Matrix JuliaWSAPReal prec

from FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

traceMatrix: Vector % -> Matrix JuliaWSAPReal prec

from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

urand01: () -> %

urand01() returns a unit square random complex number.

zero?: % -> Boolean

from JuliaRing

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra JuliaWSAPReal prec

arbitraryPrecision

ArcHyperbolicFunctionCategory

ArcTrigonometricFunctionCategory

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(JuliaWSAPReal prec, JuliaWSAPReal prec)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if JuliaWSAPReal prec has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleFrom JuliaWSAPReal prec

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ComplexCategory JuliaWSAPReal prec

ConvertibleTo Complex DoubleFloat

ConvertibleTo Complex Float

ConvertibleTo InputForm if JuliaWSAPReal prec has ConvertibleTo InputForm

ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if JuliaWSAPReal prec has ConvertibleTo Pattern Integer

ConvertibleTo SparseUnivariatePolynomial JuliaWSAPReal prec

ConvertibleTo String

DifferentialExtension JuliaWSAPReal prec

DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(JuliaWSAPReal prec, %) if JuliaWSAPReal prec has Eltable(JuliaWSAPReal prec, JuliaWSAPReal prec)

EntireRing

EuclideanDomain

Evalable JuliaWSAPReal prec if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec

Field

FieldOfPrimeCharacteristic if JuliaWSAPReal prec has FiniteFieldCategory

Finite if JuliaWSAPReal prec has Finite

FiniteFieldCategory if JuliaWSAPReal prec has FiniteFieldCategory

FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

FramedModule JuliaWSAPReal prec

FullyEvalableOver JuliaWSAPReal prec

FullyLinearlyExplicitOver JuliaWSAPReal prec

FullyPatternMatchable JuliaWSAPReal prec

FullyRetractableTo JuliaWSAPReal prec

GcdDomain

Hashable if JuliaWSAPReal prec has Hashable

HyperbolicFunctionCategory

InnerEvalable(JuliaWSAPReal prec, JuliaWSAPReal prec) if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec

InnerEvalable(Symbol, JuliaWSAPReal prec) if JuliaWSAPReal prec has InnerEvalable(Symbol, JuliaWSAPReal prec)

IntegralDomain

JuliaObjectRing

JuliaObjectType

JuliaRing

JuliaType

JuliaWSNumber

JuliaWSObject

JuliaWSRing

LeftModule %

LeftModule Fraction Integer

LeftModule JuliaWSAPReal prec

LeftOreRing

LinearlyExplicitOver Integer if JuliaWSAPReal prec has LinearlyExplicitOver Integer

LinearlyExplicitOver JuliaWSAPReal prec

LiouvillianFunctionCategory

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module JuliaWSAPReal prec

MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)

Monoid

multiplicativeValuation if JuliaWSAPReal prec has IntegerNumberSystem

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra JuliaWSAPReal prec

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PartialDifferentialRing Symbol if JuliaWSAPReal prec has PartialDifferentialRing Symbol

Patternable JuliaWSAPReal prec

PatternMatchable Float

PatternMatchable Integer if JuliaWSAPReal prec has PatternMatchable Integer

PolynomialFactorizationExplicit if JuliaWSAPReal prec has PolynomialFactorizationExplicit

PrimitiveFunctionCategory

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo JuliaWSAPReal prec

RightModule %

RightModule Fraction Integer

RightModule Integer if JuliaWSAPReal prec has LinearlyExplicitOver Integer

RightModule JuliaWSAPReal prec

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if JuliaWSAPReal prec has FiniteFieldCategory

TranscendentalFunctionCategory

TrigonometricFunctionCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown