JuliaWSAPComplex precΒΆ
jws.spad line 1332 [edit on github]
prec: PositiveInteger
Julia Wolfram Symbolic arbitrary precision complex numbers using Wolfram Symbolic Transport Protocol.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if JuliaWSAPReal prec has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, JuliaWSAPReal prec) -> %
from RightModule JuliaWSAPReal prec
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (JuliaWSAPReal prec, %) -> %
from LeftModule JuliaWSAPReal prec
- *: (JuliaWSInteger, %) -> %
n * z
multipliesn
byz
.- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from ComplexCategory JuliaWSAPReal prec
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> JuliaWSAPReal prec
from ComplexCategory JuliaWSAPReal prec
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, %) -> %
atan(z1,z2)
computes the arc tangent ofz2/z1
.
- atanh: % -> %
- basis: () -> Vector %
from FramedModule JuliaWSAPReal prec
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- charthRoot: % -> % if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if JuliaWSAPReal prec has CharacteristicNonZero or % has CharacteristicNonZero and JuliaWSAPReal prec has PolynomialFactorizationExplicit
- Chi: % -> %
- Ci: % -> %
- coerce: % -> JuliaWSExpression
coerce(cplx)
coercescplx
. Convenience function.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Complex Integer -> %
coerce(gi)
coercesgi
. Convenience function.- coerce: Fraction Integer -> %
- coerce: Integer -> %
coerce(i)
: convenience function.- coerce: JuliaWSAPReal prec -> %
from Algebra JuliaWSAPReal prec
- coerce: JuliaWSInteger -> %
coerce(int)
: coercesint
. Convenience function.
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (JuliaWSAPReal prec, JuliaWSAPReal prec) -> %
complex(re, im)
returns the complex number from real partre
and imaginary part im.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaWSAPReal prec has PolynomialFactorizationExplicit or JuliaWSAPReal prec has FiniteFieldCategory
- conjugate: % -> %
from ComplexCategory JuliaWSAPReal prec
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm if JuliaWSAPReal prec has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if JuliaWSAPReal prec has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial JuliaWSAPReal prec
from ConvertibleTo SparseUnivariatePolynomial JuliaWSAPReal prec
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector JuliaWSAPReal prec
from FramedModule JuliaWSAPReal prec
- convert: SparseUnivariatePolynomial JuliaWSAPReal prec -> %
from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- convert: Vector JuliaWSAPReal prec -> %
from FramedModule JuliaWSAPReal prec
- coordinates: % -> Vector JuliaWSAPReal prec
from FramedModule JuliaWSAPReal prec
- coordinates: (%, Vector %) -> Vector JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- coordinates: (Vector %, Vector %) -> Matrix JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- coordinates: Vector % -> Matrix JuliaWSAPReal prec
from FramedModule JuliaWSAPReal prec
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec) -> %
from DifferentialExtension JuliaWSAPReal prec
- D: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec, NonNegativeInteger) -> %
from DifferentialExtension JuliaWSAPReal prec
- D: (%, List Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial JuliaWSAPReal prec
from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- derivationCoordinates: (Vector %, JuliaWSAPReal prec -> JuliaWSAPReal prec) -> Matrix JuliaWSAPReal prec
from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec) -> %
from DifferentialExtension JuliaWSAPReal prec
- differentiate: (%, JuliaWSAPReal prec -> JuliaWSAPReal prec, NonNegativeInteger) -> %
from DifferentialExtension JuliaWSAPReal prec
- differentiate: (%, List Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaWSAPReal prec has PartialDifferentialRing Symbol
- dilog: % -> %
- discreteLog: % -> NonNegativeInteger if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaWSAPReal prec has FiniteFieldCategory
- discriminant: () -> JuliaWSAPReal prec
from FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- discriminant: Vector % -> JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- Ei: % -> %
- elt: (%, JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Eltable(JuliaWSAPReal prec, JuliaWSAPReal prec)
from Eltable(JuliaWSAPReal prec, %)
- enumerate: () -> List % if JuliaWSAPReal prec has Finite
from Finite
- erf: % -> %
- erf: (%, %) -> %
erf(z)
the error function ofz
.
- erfc: % -> %
erfc(z)
returns the complementary error function ofz
.
- erfi: % -> %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec
from Evalable JuliaWSAPReal prec
- eval: (%, JuliaWSAPReal prec, JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec
from InnerEvalable(JuliaWSAPReal prec, JuliaWSAPReal prec)
- eval: (%, List Equation JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec
from Evalable JuliaWSAPReal prec
- eval: (%, List JuliaWSAPReal prec, List JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec
from InnerEvalable(JuliaWSAPReal prec, JuliaWSAPReal prec)
- eval: (%, List Symbol, List JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has InnerEvalable(Symbol, JuliaWSAPReal prec)
from InnerEvalable(Symbol, JuliaWSAPReal prec)
- eval: (%, Symbol, JuliaWSAPReal prec) -> % if JuliaWSAPReal prec has InnerEvalable(Symbol, JuliaWSAPReal prec)
from InnerEvalable(Symbol, JuliaWSAPReal prec)
- exp: % -> %
- exp: () -> %
exp()
returns the JuliaWSAPRealβ―
(%e
or exp(1)).
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, JuliaWSAPReal prec) -> Union(%, failed)
from ComplexCategory JuliaWSAPReal prec
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSAPReal prec has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSAPReal prec has PolynomialFactorizationExplicit
- fresnelC: % -> %
- fresnelS: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- hash: % -> SingleInteger if JuliaWSAPReal prec has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if JuliaWSAPReal prec has Hashable
from Hashable
- imag: % -> JuliaWSAPReal prec
from ComplexCategory JuliaWSAPReal prec
- imaginary: () -> %
from ComplexCategory JuliaWSAPReal prec
- index: PositiveInteger -> % if JuliaWSAPReal prec has Finite
from Finite
- init: % if JuliaWSAPReal prec has FiniteFieldCategory
from StepThrough
- integral: (%, SegmentBinding %) -> %
- integral: (%, Symbol) -> %
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlApprox?: (%, %) -> Boolean
jlApprox?(x,y)
computes inexact equality comparison withWS
default parameters (Equal).
- jlEval: % -> %
from JuliaWSObject
- jlHead: % -> JuliaWSSymbol
from JuliaWSObject
- jlId: % -> String
from JuliaObjectType
- jlNumeric: % -> %
from JuliaWSObject
- jlNumeric: (%, PositiveInteger) -> %
from JuliaWSObject
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlSymbolic: % -> String
from JuliaWSObject
- jlType: % -> String
from JuliaObjectType
- jWSComplex: (JuliaWSAPReal prec, JuliaWSAPReal prec) -> %
jWSComplex(re, im)
constructs a JuliaWSComplex from real partre
and imaginary part im.
- jWSComplex: JuliaWSAPReal prec -> %
jWSComplex(re)
constructs a JuliaWSComplex with real partre
.
- jWSInterpret: (String, String) -> %
from JuliaWSObject
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- li: % -> %
- lift: % -> SparseUnivariatePolynomial JuliaWSAPReal prec
from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- log10: % -> %
log10(z)
compute logarithm ofz
in base 10.
- log2: % -> %
log2(z)
compute logarithm ofz
in base 2.
- log: % -> %
- lookup: % -> PositiveInteger if JuliaWSAPReal prec has Finite
from Finite
- map: (JuliaWSAPReal prec -> JuliaWSAPReal prec, %) -> %
from FullyEvalableOver JuliaWSAPReal prec
- minimalPolynomial: % -> SparseUnivariatePolynomial JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- nextItem: % -> Union(%, failed) if JuliaWSAPReal prec has FiniteFieldCategory
from StepThrough
- norm: % -> JuliaWSAPReal prec
from ComplexCategory JuliaWSAPReal prec
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if JuliaWSAPReal prec has FiniteFieldCategory
- order: % -> PositiveInteger if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaWSAPReal prec has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: JuliaWSAPReal prec, phi: JuliaWSAPReal prec)
from ComplexCategory JuliaWSAPReal prec
- primeFrobenius: % -> % if JuliaWSAPReal prec has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if JuliaWSAPReal prec has FiniteFieldCategory
- primitive?: % -> Boolean if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- random: () -> % if JuliaWSAPReal prec has Finite
from Finite
- rank: () -> PositiveInteger
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- rational?: % -> Boolean if JuliaWSAPReal prec has IntegerNumberSystem
from ComplexCategory JuliaWSAPReal prec
- rational: % -> Fraction Integer if JuliaWSAPReal prec has IntegerNumberSystem
from ComplexCategory JuliaWSAPReal prec
- rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaWSAPReal prec has IntegerNumberSystem
from ComplexCategory JuliaWSAPReal prec
- real: % -> JuliaWSAPReal prec
from ComplexCategory JuliaWSAPReal prec
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial JuliaWSAPReal prec -> Union(%, failed)
from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- reduce: SparseUnivariatePolynomial JuliaWSAPReal prec -> %
from MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaWSAPReal prec has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaWSAPReal prec, vec: Vector JuliaWSAPReal prec)
from LinearlyExplicitOver JuliaWSAPReal prec
- reducedSystem: Matrix % -> Matrix Integer if JuliaWSAPReal prec has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaWSAPReal prec
from LinearlyExplicitOver JuliaWSAPReal prec
- regularRepresentation: % -> Matrix JuliaWSAPReal prec
from FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- regularRepresentation: (%, Vector %) -> Matrix JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector JuliaWSAPReal prec, Vector %) -> %
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- represents: Vector JuliaWSAPReal prec -> %
from FramedModule JuliaWSAPReal prec
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> JuliaWSAPReal prec
from RetractableTo JuliaWSAPReal prec
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(JuliaWSAPReal prec, failed)
from RetractableTo JuliaWSAPReal prec
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- Shi: % -> %
- Si: % -> %
- sin: % -> %
- sinc: % -> %
sinc(z)
compues the unormalized sinc ofz
, sin(z
)/z
and 0 ifz
= 0.
- sinh: % -> %
- size: () -> NonNegativeInteger if JuliaWSAPReal prec has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaWSAPReal prec has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSAPReal prec has PolynomialFactorizationExplicit
- string: % -> String
from JuliaObjectType
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaWSAPReal prec has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- toString: % -> String
from JuliaWSObject
- toString: (%, JuliaWSExpression) -> String
toString(expr, form)
returns the string representation ofexpr
withWS
language format form.
- trace: % -> JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- traceMatrix: () -> Matrix JuliaWSAPReal prec
from FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- traceMatrix: Vector % -> Matrix JuliaWSAPReal prec
from FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()
returns a unit square random complex number.
Algebra %
Algebra JuliaWSAPReal prec
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JuliaWSAPReal prec, JuliaWSAPReal prec)
CharacteristicNonZero if JuliaWSAPReal prec has CharacteristicNonZero
CoercibleFrom Fraction Integer
CoercibleFrom JuliaWSAPReal prec
ComplexCategory JuliaWSAPReal prec
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if JuliaWSAPReal prec has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if JuliaWSAPReal prec has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial JuliaWSAPReal prec
DifferentialExtension JuliaWSAPReal prec
Eltable(JuliaWSAPReal prec, %) if JuliaWSAPReal prec has Eltable(JuliaWSAPReal prec, JuliaWSAPReal prec)
Evalable JuliaWSAPReal prec if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec
FieldOfPrimeCharacteristic if JuliaWSAPReal prec has FiniteFieldCategory
Finite if JuliaWSAPReal prec has Finite
FiniteFieldCategory if JuliaWSAPReal prec has FiniteFieldCategory
FiniteRankAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
FramedAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
FramedModule JuliaWSAPReal prec
FullyEvalableOver JuliaWSAPReal prec
FullyLinearlyExplicitOver JuliaWSAPReal prec
FullyPatternMatchable JuliaWSAPReal prec
FullyRetractableTo JuliaWSAPReal prec
Hashable if JuliaWSAPReal prec has Hashable
InnerEvalable(JuliaWSAPReal prec, JuliaWSAPReal prec) if JuliaWSAPReal prec has Evalable JuliaWSAPReal prec
InnerEvalable(Symbol, JuliaWSAPReal prec) if JuliaWSAPReal prec has InnerEvalable(Symbol, JuliaWSAPReal prec)
LeftModule JuliaWSAPReal prec
LinearlyExplicitOver Integer if JuliaWSAPReal prec has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaWSAPReal prec
Module %
Module JuliaWSAPReal prec
MonogenicAlgebra(JuliaWSAPReal prec, SparseUnivariatePolynomial JuliaWSAPReal prec)
multiplicativeValuation if JuliaWSAPReal prec has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JuliaWSAPReal prec
PartialDifferentialRing Symbol if JuliaWSAPReal prec has PartialDifferentialRing Symbol
Patternable JuliaWSAPReal prec
PatternMatchable Integer if JuliaWSAPReal prec has PatternMatchable Integer
PolynomialFactorizationExplicit if JuliaWSAPReal prec has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RetractableTo JuliaWSAPReal prec
RightModule Integer if JuliaWSAPReal prec has LinearlyExplicitOver Integer
RightModule JuliaWSAPReal prec
StepThrough if JuliaWSAPReal prec has FiniteFieldCategory