JuliaWSVector EΒΆ
jwsagg.spad line 248 [edit on github]
Julia Wolfram Symbolic vectors using Wolfram Symbolic Transport Protocol.
- #: % -> JuliaWSInteger
from JuliaWSAggregate E
- #: % -> NonNegativeInteger
from Aggregate
- *: (%, E) -> %
x * ris the right scalar multiple of the scalarrand the vectorx.
- *: (E, %) -> %
r*xis the left scalar multiple of the scalarrand the vectorx.- *: (Integer, %) -> % if E has AbelianGroup
from VectorCategory E
- *: (JuliaWSInteger, %) -> %
n*ascale the vector a byn.
- +: (%, %) -> %
a + bis the vector addition.WSerror if dimensions are incompatible.
- -: % -> %
-anegates each elements of the vector a.
- -: (%, %) -> %
a - bis the vector substraction.WSerror if dimensions are incompatible.
- <=: (%, %) -> Boolean if E has OrderedSet
from PartialOrder
- <: (%, %) -> Boolean if E has OrderedSet
from PartialOrder
- >=: (%, %) -> Boolean if E has OrderedSet
from PartialOrder
- >: (%, %) -> Boolean if E has OrderedSet
from PartialOrder
- accumulate: % -> % if E has JuliaWSNumber
from JuliaWSAggregate E
- any?: (E -> Boolean, %) -> Boolean
from HomogeneousAggregate E
- append: (%, E) -> %
from JuliaWSAggregate E
- coerce: % -> JuliaObject
from JuliaObjectType
- coerce: % -> JuliaWSExpression
from JuliaWSAggregate E
- coerce: % -> JuliaWSMatrix E if E has JuliaWSRing
coerce(v)coerces inplacevto aWSmatrix.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: List E -> %
from JuliaWSAggregate E
- concat: (%, %) -> %
from LinearAggregate E
- concat: (%, E) -> %
from LinearAggregate E
- concat: (E, %) -> %
from LinearAggregate E
- concat: List % -> %
from LinearAggregate E
- construct: List E -> %
from Collection E
- convert: % -> InputForm if E has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> String
from ConvertibleTo String
- copyInto!: (%, %, Integer) -> %
from LinearAggregate E
- count: (E -> Boolean, %) -> NonNegativeInteger
from HomogeneousAggregate E
- count: (E, %) -> NonNegativeInteger
from HomogeneousAggregate E
- cross: (%, %) -> %
cross(v1,v2)computes the vector cross product ofv1andv2.
- delete: (%, Integer) -> %
from LinearAggregate E
- delete: (%, JuliaWSList JuliaWSInteger) -> %
from JuliaWSAggregate E
- delete: (%, UniversalSegment Integer) -> %
from LinearAggregate E
- differences: % -> % if E has JuliaWSNumber
from JuliaWSAggregate E
- dimensions: % -> JuliaWSList JuliaWSInteger
from JuliaWSAggregate E
- dot: (%, %) -> E
dot(v1, v2)is the dot product ofv1andv2.
- elt: (%, Integer) -> E
from JuliaWSAggregate E
- elt: (%, Integer, E) -> E
from EltableAggregate(Integer, E)
- elt: (%, UniversalSegment Integer) -> %
from Eltable(UniversalSegment Integer, %)
- entries: % -> List E
from IndexedAggregate(Integer, E)
- entry?: (E, %) -> Boolean
from IndexedAggregate(Integer, E)
- eval: (%, E, E) -> % if E has Evalable E
from InnerEvalable(E, E)
- eval: (%, Equation E) -> % if E has Evalable E
from Evalable E
- eval: (%, List E, List E) -> % if E has Evalable E
from InnerEvalable(E, E)
- eval: (%, List Equation E) -> % if E has Evalable E
from Evalable E
- every?: (E -> Boolean, %) -> Boolean
from HomogeneousAggregate E
- extract: (%, JuliaWSExpression) -> %
from JuliaWSAggregate E
- fill!: (%, E) -> %
from IndexedAggregate(Integer, E)
- find: (E -> Boolean, %) -> Union(E, failed)
from Collection E
- first: % -> E
from JuliaWSAggregate E
- first: (%, NonNegativeInteger) -> %
from LinearAggregate E
- hash: % -> SingleInteger if E has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if E has Hashable
from Hashable
- index?: (Integer, %) -> Boolean
from IndexedAggregate(Integer, E)
- indices: % -> List Integer
from IndexedAggregate(Integer, E)
- insert: (%, %, Integer) -> %
from LinearAggregate E
- insert: (%, E, JuliaWSInteger) -> %
from JuliaWSAggregate E
- insert: (E, %, Integer) -> %
from LinearAggregate E
- intersection: (%, %) -> %
from JuliaWSAggregate E
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlDisplay: % -> Void
from JuliaObjectType
- jlEval: % -> %
from JuliaWSObject
- jlHead: % -> JuliaWSSymbol
from JuliaWSObject
- jlId: % -> JuliaInt64
from JuliaObjectType
- jlNumeric: % -> %
from JuliaWSObject
- jlNumeric: (%, PositiveInteger) -> %
from JuliaWSObject
- jlObject: () -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlSymbolic: % -> String
from JuliaWSObject
- jlType: % -> String
from JuliaObjectType
- join: (%, %) -> %
from JuliaWSAggregate E
- jWSAggregate: List E -> %
from JuliaWSAggregate E
- jWSInterpret: (String, String) -> %
from JuliaWSObject
- jWSVector: List E -> %
jWSVector(list)constructslistas a JuliaWSVector.
- jWSVector: String -> %
jWSVector(str)constructsstras a JuliaWSVector.strmust be in theWSlanguage (list).
- last: % -> E
from JuliaWSAggregate E
- latex: % -> String
from SetCategory
- leftTrim: (%, E) -> %
from LinearAggregate E
- length: % -> E if E has RadicalCategory and E has Ring
from VectorCategory E
- length: % -> JuliaWSInteger
from JuliaWSAggregate E
- less?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- map!: (E -> E, %) -> %
from HomogeneousAggregate E
- map: ((E, E) -> E, %, %) -> %
from LinearAggregate E
- map: (E -> E, %) -> %
from HomogeneousAggregate E
- max: % -> E if E has OrderedSet
from HomogeneousAggregate E
- max: (%, %) -> % if E has OrderedSet
from OrderedSet
- max: ((E, E) -> Boolean, %) -> E
from HomogeneousAggregate E
- maxIndex: % -> Integer
from IndexedAggregate(Integer, E)
- member?: (E, %) -> Boolean
from HomogeneousAggregate E
- members: % -> List E
from HomogeneousAggregate E
- merge: (%, %) -> % if E has OrderedSet
from LinearAggregate E
- merge: ((E, E) -> Boolean, %, %) -> %
from LinearAggregate E
- min: % -> E if E has OrderedSet
from HomogeneousAggregate E
- min: (%, %) -> % if E has OrderedSet
from OrderedSet
- minIndex: % -> Integer
from IndexedAggregate(Integer, E)
- more?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- mutable?: % -> Boolean
from JuliaObjectType
- new: (NonNegativeInteger, E) -> %
from LinearAggregate E
- norm: % -> E
norm(v)computes the norm of the vectorv.
- nothing?: % -> Boolean
from JuliaObjectType
- outerProduct: (%, %) -> Matrix E if E has Ring
from VectorCategory E
- part: (%, JuliaWSInteger) -> E
from JuliaWSAggregate E
- parts: % -> List E
from HomogeneousAggregate E
- position: (E -> Boolean, %) -> Integer
from LinearAggregate E
- position: (E, %) -> Integer
from LinearAggregate E
- position: (E, %, Integer) -> Integer
from LinearAggregate E
- prepend: (%, E) -> %
from JuliaWSAggregate E
- qelt: (%, Integer) -> E
from JuliaWSAggregate E
- qsetelt!: (%, Integer, E) -> %
from JuliaWSAggregate E
- qsetelt!: (%, Integer, E) -> E
from EltableAggregate(Integer, E)
- qsetelt: (%, Integer, E) -> %
from JuliaWSAggregate E
- reduce: ((E, E) -> E, %) -> E
from Collection E
- reduce: ((E, E) -> E, %, E) -> E
from Collection E
- reduce: ((E, E) -> E, %, E, E) -> E
from Collection E
- remove: (E -> Boolean, %) -> %
from Collection E
- remove: (E, %) -> %
from Collection E
- removeDuplicates: % -> %
from JuliaWSAggregate E
- replacePart: (%, %) -> %
from JuliaWSAggregate E
- rest: % -> %
from JuliaWSAggregate E
- reverse!: % -> %
from LinearAggregate E
- reverse: % -> %
from JuliaWSAggregate E
- reverse: (%, JuliaWSInteger) -> %
from JuliaWSAggregate E
- reverse: (%, JuliaWSList JuliaWSInteger) -> %
from JuliaWSAggregate E
- riffle: (%, %) -> %
from JuliaWSAggregate E
- riffle: (%, %, %) -> %
from JuliaWSAggregate E
- rightTrim: (%, E) -> %
from LinearAggregate E
- select: (E -> Boolean, %) -> %
from Collection E
- setelt!: (%, Integer, E) -> %
from JuliaWSAggregate E
- setelt!: (%, Integer, E) -> E
from EltableAggregate(Integer, E)
- setelt!: (%, UniversalSegment Integer, E) -> E
from LinearAggregate E
- setelt: (%, Integer, E) -> %
from JuliaWSAggregate E
- setIntersection: (%, %) -> %
from JuliaWSAggregate E
- size?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- smaller?: (%, %) -> Boolean if E has Comparable
from Comparable
- sort!: % -> % if E has OrderedSet
from LinearAggregate E
- sort!: ((E, E) -> Boolean, %) -> %
from LinearAggregate E
- sort: % -> %
from JuliaWSAggregate E
- sort: ((E, E) -> Boolean, %) -> %
from LinearAggregate E
- sorted?: % -> Boolean
from JuliaWSAggregate E
- sorted?: ((E, E) -> Boolean, %) -> Boolean
from LinearAggregate E
- string: % -> String
from JuliaObjectType
- take: (%, Integer) -> %
from JuliaWSAggregate E
- take: (%, JuliaWSList JuliaWSInteger) -> %
from JuliaWSAggregate E
- toString: % -> String
from JuliaWSObject
- total: % -> E if E has JuliaWSNumber
from JuliaWSAggregate E
- transpose: % -> %
transpose(v)transposesv. For esoteric purpose, and if you know what you are doing. There is only one type of vector in the Wolfram language. Should not be used, and for normal purpose, does nothing.
- trim: (%, E) -> %
from LinearAggregate E
- union: (%, %) -> %
from JuliaWSAggregate E
- vector: JuliaWSList E -> %
vector(list)returnslistas a vector. Inplace coercion. example{vector(range(5)}
- zero?: % -> Boolean if E has AbelianMonoid
from VectorCategory E
- zero: NonNegativeInteger -> % if E has AbelianMonoid
from VectorCategory E
Comparable if E has Comparable
ConvertibleTo InputForm if E has ConvertibleTo InputForm
Eltable(UniversalSegment Integer, %)
Evalable E if E has Evalable E
InnerEvalable(E, E) if E has Evalable E
OneDimensionalArrayAggregate E
OrderedSet if E has OrderedSet
PartialOrder if E has OrderedSet