NemoPadicInteger p

jnpadic.spad line 168 [edit on github]

Stream-based implementation of Zp: p-adic numbers are represented as sum(i = 0.., a[i] * p^i), where the a[i] lie in 0, 1, …, (p - 1).

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (Integer, %) -> %

from AbelianGroup

*: (NemoInteger, %) -> %

from JuliaObjectRing

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

=: (%, %) -> Boolean

from BasicType

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

approximate: (%, Integer) -> Integer

from NemoPadicIntegerCategory p

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> %

from Algebra %

coerce: % -> JuliaObject

from JuliaObjectType

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Integer -> %

from NonAssociativeRing

coerce: NemoFraction NemoInteger -> %

coerce: NemoInteger -> %

commutator: (%, %) -> %

from NonAssociativeRng

complete: % -> %

from NemoPadicIntegerCategory p

convert: % -> String

from ConvertibleTo String

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extend: (%, Integer) -> %

from NemoPadicIntegerCategory p

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

jlAbout: % -> Void

from JuliaObjectType

jlApply: (String, %) -> %

from JuliaObjectType

jlApply: (String, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %) -> %

from JuliaObjectType

jlDisplay: % -> Void

from JuliaObjectType

jlId: % -> JuliaInt64

from JuliaObjectType

jlNemoRing: () -> String

from NemoRing

jlObject: () -> String

from NemoRing

jlRef: % -> SExpression

from JuliaObjectType

jlref: String -> %

from JuliaObjectType

jlType: % -> String

from JuliaObjectType

jpadic: NemoFraction NemoInteger -> %

jpadic: NemoInteger -> %

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

moduloP: % -> Integer

from NemoPadicIntegerCategory p

modulus: () -> NemoInteger

from NemoPadicIntegerCategory p

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JuliaObjectType

nothing?: % -> Boolean

from JuliaObjectType

O: (NemoInteger, NemoInteger) -> %

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> NonNegativeInteger

from NemoPadicIntegerCategory p

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra %

precision: % -> Integer

prime: () -> NemoInteger

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

quotientByP: % -> %

from NemoPadicIntegerCategory p

recip: % -> Union(%, failed)

from MagmaWithUnit

rem: (%, %) -> %

from EuclideanDomain

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

sqrt: (%, Integer) -> %

from NemoPadicIntegerCategory p

string: % -> String

from JuliaObjectType

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

BasicType

BiModule(%, %)

CancellationAbelianMonoid

CharacteristicZero

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

ConvertibleTo String

EntireRing

EuclideanDomain

GcdDomain

IntegralDomain

JuliaObjectRing

JuliaObjectType

JuliaRing

JuliaType

LeftModule %

LeftOreRing

Magma

MagmaWithUnit

Module %

Monoid

NemoCommutativeRing

NemoPadicIntegerCategory p

NemoRing

NemoType

NonAssociativeAlgebra %

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PrincipalIdealDomain

RightModule %

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

TwoSidedRecip

unitsKnown