NemoMultivariatePolynomial(R, VarSet, InternalOrdering)¶
jnpoly.spad line 195 [edit on github]
R: NemoRing
InternalOrdering: JuliaSymbol
This type is a basic representation of sparse, distributed multivariate polynomials using the Julia Nemo package. It is parameterized by the coefficient ring. The coefficient ring may be non-commutative, but the variables are assumed to commute. The monomial ordering used for internal storage can be one of :lex, :deglex or :degrevlex. For example: VarSet: List Symbol:=[x
,y
,z
] V
:=
OrderedVariableList(VarSet) --
eventually, for later use --
See SparseMultivariatePolynomial() --
E
:=
IndexedExponents V
PRing :=
NMP
(NINT,VarSet, “lex”) x
:=
x::V::PRing y
:=
y::V::PRing z
:=
z::V::PRing p:=x*2+3*y^2+17*z^13
p^7
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
*: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
*: (%, NonNegativeInteger) -> %
*: (%, PositiveInteger) -> %
- *: (%, R) -> %
from RightModule R
*: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
+: (%, Fraction Integer) -> % if R has QuotientFieldCategory NemoInteger
+: (Fraction Integer, %) -> % if R has QuotientFieldCategory NemoInteger
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- coefficient: (%, IndexedExponents OrderedVariableList VarSet) -> R
from AbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- coefficient: (%, List OrderedVariableList VarSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- coefficient: (%, OrderedVariableList VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- coefficients: % -> List R
from FreeModuleCategory(R, IndexedExponents OrderedVariableList VarSet)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: OrderedVariableList VarSet -> %
from CoercibleFrom OrderedVariableList VarSet
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: IndexedExponents OrderedVariableList VarSet, c: R) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- constructOrdered: List Record(k: IndexedExponents OrderedVariableList VarSet, c: R) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- content: (%, OrderedVariableList VarSet) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> String
from ConvertibleTo String
- D: (%, List OrderedVariableList VarSet) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- D: (%, List OrderedVariableList VarSet, List NonNegativeInteger) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- D: (%, OrderedVariableList VarSet) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- D: (%, OrderedVariableList VarSet, NonNegativeInteger) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- degree: % -> IndexedExponents OrderedVariableList VarSet
from AbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- degree: (%, List OrderedVariableList VarSet) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- degree: (%, OrderedVariableList VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- differentiate: (%, List OrderedVariableList VarSet) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- differentiate: (%, List OrderedVariableList VarSet, List NonNegativeInteger) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- differentiate: (%, OrderedVariableList VarSet) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- differentiate: (%, OrderedVariableList VarSet, NonNegativeInteger) -> %
from PartialDifferentialRing OrderedVariableList VarSet
- discriminant: (%, OrderedVariableList VarSet) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List OrderedVariableList VarSet, List %) -> %
from InnerEvalable(OrderedVariableList VarSet, %)
- eval: (%, List OrderedVariableList VarSet, List R) -> %
from InnerEvalable(OrderedVariableList VarSet, R)
- eval: (%, OrderedVariableList VarSet, %) -> %
from InnerEvalable(OrderedVariableList VarSet, %)
- eval: (%, OrderedVariableList VarSet, R) -> %
from InnerEvalable(OrderedVariableList VarSet, R)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factor: % -> NemoFactored %
factor(p)
returns the factorization ofp
.
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, IndexedExponents OrderedVariableList VarSet, R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- ground: % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- isExpt: % -> Union(Record(var: OrderedVariableList VarSet, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlId: % -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
- jmp2nmp: MultivariatePolynomial(VarSet, R) -> %
jnmp(
p
) converts the multivariate polynomialp
to a Nemo multivariate polynomial.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- leadingMonomial: % -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- leadingSupport: % -> IndexedExponents OrderedVariableList VarSet
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- leadingTerm: % -> Record(k: IndexedExponents OrderedVariableList VarSet, c: R)
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (IndexedExponents OrderedVariableList VarSet -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents OrderedVariableList VarSet)
- listOfTerms: % -> List Record(k: IndexedExponents OrderedVariableList VarSet, c: R)
from IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- mainVariable: % -> Union(OrderedVariableList VarSet, failed)
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- mapExponents: (IndexedExponents OrderedVariableList VarSet -> IndexedExponents OrderedVariableList VarSet, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- minimumDegree: % -> IndexedExponents OrderedVariableList VarSet
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- minimumDegree: (%, List OrderedVariableList VarSet) -> List NonNegativeInteger
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- minimumDegree: (%, OrderedVariableList VarSet) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- monicDivide: (%, %, OrderedVariableList VarSet) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- monomial?: % -> Boolean
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- monomial: (%, List OrderedVariableList VarSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- monomial: (%, OrderedVariableList VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- monomial: (R, IndexedExponents OrderedVariableList VarSet) -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- multivariate: (SparseUnivariatePolynomial %, OrderedVariableList VarSet) -> %
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- multivariate: (SparseUnivariatePolynomial R, OrderedVariableList VarSet) -> %
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- mutable?: % -> Boolean
from JuliaObjectType
nmp2smp: % -> SparseMultivariatePolynomial(Fraction Integer, OrderedVariableList VarSet) if R has QuotientFieldCategory IntegerNumberSystem
nmp2smp: % -> SparseMultivariatePolynomial(Integer, OrderedVariableList VarSet) if R hasn’t QuotientFieldCategory IntegerNumberSystem and R has IntegerNumberSystem
- nothing?: % -> Boolean
from JuliaObjectType
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if OrderedVariableList VarSet has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if OrderedVariableList VarSet has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
from NonAssociativeAlgebra %
- pomopo!: (%, R, IndexedExponents OrderedVariableList VarSet, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- primitivePart: (%, OrderedVariableList VarSet) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
- resultant: (%, %, OrderedVariableList VarSet) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> OrderedVariableList VarSet
from RetractableTo OrderedVariableList VarSet
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(OrderedVariableList VarSet, failed)
from RetractableTo OrderedVariableList VarSet
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- string: % -> String
from JuliaObjectType
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List IndexedExponents OrderedVariableList VarSet
from FreeModuleCategory(R, IndexedExponents OrderedVariableList VarSet)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- totalDegree: (%, List OrderedVariableList VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- totalDegreeSorted: (%, List OrderedVariableList VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- univariate: (%, OrderedVariableList VarSet) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- variables: % -> List OrderedVariableList VarSet
from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom OrderedVariableList VarSet
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList VarSet)
FreeModuleCategory(R, IndexedExponents OrderedVariableList VarSet)
IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList VarSet)
IndexedProductCategory(R, IndexedExponents OrderedVariableList VarSet)
InnerEvalable(%, %)
InnerEvalable(OrderedVariableList VarSet, %)
InnerEvalable(OrderedVariableList VarSet, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing OrderedVariableList VarSet
PatternMatchable Float if OrderedVariableList VarSet has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if OrderedVariableList VarSet has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, IndexedExponents OrderedVariableList VarSet, OrderedVariableList VarSet)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo OrderedVariableList VarSet
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit