SparseUnivariatePuiseuxSeries(Coef, var, cen)ΒΆ
sups.spad line 1638 [edit on github]
Sparse Puiseux series in one variable SparseUnivariatePuiseuxSeries is a domain representing Puiseux series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, SparseUnivariatePuiseuxSeries(Integer, x, 3)
represents Puiseux series in (x - 3)
with Integer coefficients.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> % if Coef has Field
from Field
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Fraction Integer)
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- ^: (%, Integer) -> % if Coef has Field
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Fraction Integer) -> Coef if Coef has ^: (Coef, Fraction Integer) -> Coef and Coef has coerce: Symbol -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- center: % -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, Fraction Integer) -> Coef
from AbelianMonoidRing(Coef, Fraction Integer)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: SparseUnivariateLaurentSeries(Coef, var, cen) -> %
from UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
- coerce: SparseUnivariateTaylorSeries(Coef, var, cen) -> %
from CoercibleFrom SparseUnivariateTaylorSeries(Coef, var, cen)
- coerce: Variable var -> %
coerce(var)
converts the series variablevar
into a Puiseux series.
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- construct: List Record(k: Fraction Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- constructOrdered: List Record(k: Fraction Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- D: % -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- D: (%, List Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- D: (%, Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- degree: % -> Fraction Integer
from UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
- differentiate: % -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, List Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, Variable var) -> %
differentiate(f(x), x)
returns the derivative off(x)
with respect tox
.
- divide: (%, %) -> Record(quotient: %, remainder: %) if Coef has Field
from EuclideanDomain
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- euclideanSize: % -> NonNegativeInteger if Coef has Field
from EuclideanDomain
- eval: (%, Coef) -> Stream Coef if Coef has ^: (Coef, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- expressIdealMember: (List %, %) -> Union(List %, failed) if Coef has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if Coef has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if Coef has Field
from EuclideanDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if Coef has Field
from GcdDomain
- integrate: % -> % if Coef has Algebra Fraction Integer
from UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)
- integrate: (%, Symbol) -> % if Coef has Algebra Fraction Integer and Coef has variables: Coef -> List Symbol and Coef has integrate: (Coef, Symbol) -> Coef
from UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)
- integrate: (%, Variable var) -> % if Coef has Algebra Fraction Integer
integrate(f(x))
returns an anti-derivative of the power seriesf(x)
with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.
- inv: % -> % if Coef has Field
from DivisionRing
- latex: % -> String
from SetCategory
- laurent: % -> SparseUnivariateLaurentSeries(Coef, var, cen)
from UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
- laurentIfCan: % -> Union(SparseUnivariateLaurentSeries(Coef, var, cen), failed)
from UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
- laurentRep: % -> SparseUnivariateLaurentSeries(Coef, var, cen)
from UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if Coef has Field
from LeftOreRing
- leadingCoefficient: % -> Coef
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Fraction Integer
from IndexedProductCategory(Coef, Fraction Integer)
- leadingTerm: % -> Record(k: Fraction Integer, c: Coef)
from IndexedProductCategory(Coef, Fraction Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, Fraction Integer)
- multiEuclidean: (List %, %) -> Union(List %, failed) if Coef has Field
from EuclideanDomain
- multiplyExponents: (%, Fraction Integer) -> %
from UnivariatePuiseuxSeriesCategory Coef
- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Fraction Integer
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- order: (%, Fraction Integer) -> Fraction Integer
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- plenaryPower: (%, PositiveInteger) -> % if Coef has Algebra Fraction Integer or Coef has CommutativeRing
from NonAssociativeAlgebra Coef
- pole?: % -> Boolean
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- principalIdeal: List % -> Record(coef: List %, generator: %) if Coef has Field
from PrincipalIdealDomain
- puiseux: (Fraction Integer, SparseUnivariateLaurentSeries(Coef, var, cen)) -> %
from UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
- quo: (%, %) -> % if Coef has Field
from EuclideanDomain
- rationalPower: % -> Fraction Integer
from UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(Coef, Fraction Integer)
- rem: (%, %) -> % if Coef has Field
from EuclideanDomain
- retract: % -> SparseUnivariateLaurentSeries(Coef, var, cen)
from RetractableTo SparseUnivariateLaurentSeries(Coef, var, cen)
- retract: % -> SparseUnivariateTaylorSeries(Coef, var, cen)
from RetractableTo SparseUnivariateTaylorSeries(Coef, var, cen)
- retractIfCan: % -> Union(SparseUnivariateLaurentSeries(Coef, var, cen), failed)
from RetractableTo SparseUnivariateLaurentSeries(Coef, var, cen)
- retractIfCan: % -> Union(SparseUnivariateTaylorSeries(Coef, var, cen), failed)
from RetractableTo SparseUnivariateTaylorSeries(Coef, var, cen)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- series: (NonNegativeInteger, Stream Record(k: Fraction Integer, c: Coef)) -> %
from UnivariatePuiseuxSeriesCategory Coef
- sizeLess?: (%, %) -> Boolean if Coef has Field
from EuclideanDomain
- sqrt: % -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- squareFree: % -> Factored % if Coef has Field
- squareFreePart: % -> % if Coef has Field
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: Fraction Integer, c: Coef)
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- truncate: (%, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- truncate: (%, Fraction Integer, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, Fraction Integer)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
canonicalsClosed if Coef has Field
canonicalUnitNormal if Coef has Field
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CoercibleFrom SparseUnivariateLaurentSeries(Coef, var, cen)
CoercibleFrom SparseUnivariateTaylorSeries(Coef, var, cen)
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
DifferentialRing if Coef has *: (Fraction Integer, Coef) -> Coef
DivisionRing if Coef has Field
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
Eltable(%, %)
EntireRing if Coef has IntegralDomain
EuclideanDomain if Coef has Field
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, Fraction Integer)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
LeftOreRing if Coef has Field
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
PartialDifferentialRing Symbol if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
PrincipalIdealDomain if Coef has Field
RadicalCategory if Coef has Algebra Fraction Integer
RetractableTo SparseUnivariateLaurentSeries(Coef, var, cen)
RetractableTo SparseUnivariateTaylorSeries(Coef, var, cen)
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing
UniqueFactorizationDomain if Coef has Field
UnivariatePowerSeriesCategory(Coef, Fraction Integer)
UnivariatePuiseuxSeriesCategory Coef
UnivariatePuiseuxSeriesConstructorCategory(Coef, SparseUnivariateLaurentSeries(Coef, var, cen))
UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)