SparseUnivariateLaurentSeries(Coef, var, cen)ΒΆ
sups.spad line 1446 [edit on github]
Sparse Laurent series in one variable SparseUnivariateLaurentSeries is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, SparseUnivariateLaurentSeries(Integer, x, 3)
represents Laurent series in (x - 3)
with integer coefficients.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
from RightModule Integer
- *: (%, SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from RightModule SparseUnivariateTaylorSeries(Coef, var, cen)
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (SparseUnivariateTaylorSeries(Coef, var, cen), %) -> % if Coef has Field
from LeftModule SparseUnivariateTaylorSeries(Coef, var, cen)
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> % if Coef has Field
from Field
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Integer)
- /: (SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- <=: (%, %) -> Boolean if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
from PartialOrder
- <: (%, %) -> Boolean if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
from PartialOrder
- >=: (%, %) -> Boolean if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
from PartialOrder
- >: (%, %) -> Boolean if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
from PartialOrder
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- ^: (%, Integer) -> % if Coef has Field
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> % if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Integer) -> Coef if Coef has ^: (Coef, Integer) -> Coef and Coef has coerce: Symbol -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- ceiling: % -> SparseUnivariateTaylorSeries(Coef, var, cen) if SparseUnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- center: % -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero or % has CharacteristicNonZero and SparseUnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field or SparseUnivariateTaylorSeries(Coef, var, cen) has CharacteristicNonZero and Coef has Field
- coefficient: (%, Integer) -> Coef
from AbelianMonoidRing(Coef, Integer)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: SparseUnivariateTaylorSeries(Coef, var, cen) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- coerce: Symbol -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
from CoercibleFrom Symbol
- coerce: Variable var -> %
coerce(var)
converts the series variablevar
into a Laurent series.
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and SparseUnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- construct: List Record(k: Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Integer)
- constructOrdered: List Record(k: Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Integer)
- convert: % -> DoubleFloat if SparseUnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
from ConvertibleTo DoubleFloat
- convert: % -> Float if SparseUnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
from ConvertibleTo Float
- convert: % -> InputForm if SparseUnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo InputForm and Coef has Field
from ConvertibleTo InputForm
- convert: % -> Pattern Float if SparseUnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Float and Coef has Field
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Integer and Coef has Field
from ConvertibleTo Pattern Integer
- D: % -> % if Coef has *: (Integer, Coef) -> Coef or SparseUnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field
from DifferentialRing
- D: (%, List Symbol) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- D: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- D: (%, NonNegativeInteger) -> % if Coef has *: (Integer, Coef) -> Coef or SparseUnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field
from DifferentialRing
- D: (%, SparseUnivariateTaylorSeries(Coef, var, cen) -> SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from DifferentialExtension SparseUnivariateTaylorSeries(Coef, var, cen)
- D: (%, SparseUnivariateTaylorSeries(Coef, var, cen) -> SparseUnivariateTaylorSeries(Coef, var, cen), NonNegativeInteger) -> % if Coef has Field
from DifferentialExtension SparseUnivariateTaylorSeries(Coef, var, cen)
- D: (%, Symbol) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- D: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- degree: % -> Integer
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- denom: % -> SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- denominator: % -> % if Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- differentiate: % -> % if Coef has *: (Integer, Coef) -> Coef or SparseUnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field
from DifferentialRing
- differentiate: (%, List Symbol) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- differentiate: (%, NonNegativeInteger) -> % if Coef has *: (Integer, Coef) -> Coef or SparseUnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field
from DifferentialRing
- differentiate: (%, SparseUnivariateTaylorSeries(Coef, var, cen) -> SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from DifferentialExtension SparseUnivariateTaylorSeries(Coef, var, cen)
- differentiate: (%, SparseUnivariateTaylorSeries(Coef, var, cen) -> SparseUnivariateTaylorSeries(Coef, var, cen), NonNegativeInteger) -> % if Coef has Field
from DifferentialExtension SparseUnivariateTaylorSeries(Coef, var, cen)
- differentiate: (%, Symbol) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- differentiate: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
- differentiate: (%, Variable var) -> %
differentiate(f(x), x)
returns the derivative off(x)
with respect tox
.
- divide: (%, %) -> Record(quotient: %, remainder: %) if Coef has Field
from EuclideanDomain
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- elt: (%, SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has Eltable(SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen))
from Eltable(SparseUnivariateTaylorSeries(Coef, var, cen), %)
- euclideanSize: % -> NonNegativeInteger if Coef has Field
from EuclideanDomain
- eval: (%, Coef) -> Stream Coef if Coef has ^: (Coef, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- eval: (%, Equation SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has Evalable SparseUnivariateTaylorSeries(Coef, var, cen) and Coef has Field
from Evalable SparseUnivariateTaylorSeries(Coef, var, cen)
- eval: (%, List Equation SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has Evalable SparseUnivariateTaylorSeries(Coef, var, cen) and Coef has Field
from Evalable SparseUnivariateTaylorSeries(Coef, var, cen)
- eval: (%, List SparseUnivariateTaylorSeries(Coef, var, cen), List SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has Evalable SparseUnivariateTaylorSeries(Coef, var, cen) and Coef has Field
from InnerEvalable(SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen))
- eval: (%, List Symbol, List SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, SparseUnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from InnerEvalable(Symbol, SparseUnivariateTaylorSeries(Coef, var, cen))
- eval: (%, SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has Evalable SparseUnivariateTaylorSeries(Coef, var, cen) and Coef has Field
from InnerEvalable(SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen))
- eval: (%, Symbol, SparseUnivariateTaylorSeries(Coef, var, cen)) -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, SparseUnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from InnerEvalable(Symbol, SparseUnivariateTaylorSeries(Coef, var, cen))
- expressIdealMember: (List %, %) -> Union(List %, failed) if Coef has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- extend: (%, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if Coef has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if Coef has Field
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if SparseUnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if SparseUnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- floor: % -> SparseUnivariateTaylorSeries(Coef, var, cen) if SparseUnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- fractionPart: % -> % if SparseUnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain and Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if Coef has Field
from GcdDomain
- init: % if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has StepThrough
from StepThrough
- integrate: % -> % if Coef has Algebra Fraction Integer
from UnivariateSeriesWithRationalExponents(Coef, Integer)
- integrate: (%, Symbol) -> % if Coef has Algebra Fraction Integer and Coef has variables: Coef -> List Symbol and Coef has integrate: (Coef, Symbol) -> Coef
from UnivariateSeriesWithRationalExponents(Coef, Integer)
- integrate: (%, Variable var) -> % if Coef has Algebra Fraction Integer
integrate(f(x))
returns an anti-derivative of the power seriesf(x)
with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.
- inv: % -> % if Coef has Field
from DivisionRing
- latex: % -> String
from SetCategory
- laurent: (Integer, SparseUnivariateTaylorSeries(Coef, var, cen)) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- laurent: (Integer, Stream Coef) -> %
from UnivariateLaurentSeriesCategory Coef
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if Coef has Field
from LeftOreRing
- leadingCoefficient: % -> Coef
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Integer
from IndexedProductCategory(Coef, Integer)
- leadingTerm: % -> Record(k: Integer, c: Coef)
from IndexedProductCategory(Coef, Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, Integer)
- map: (SparseUnivariateTaylorSeries(Coef, var, cen) -> SparseUnivariateTaylorSeries(Coef, var, cen), %) -> % if Coef has Field
from FullyEvalableOver SparseUnivariateTaylorSeries(Coef, var, cen)
- max: (%, %) -> % if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
from OrderedSet
- min: (%, %) -> % if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
from OrderedSet
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, Integer)
- monomial: (Coef, Integer) -> %
from IndexedProductCategory(Coef, Integer)
- multiEuclidean: (List %, %) -> Union(List %, failed) if Coef has Field
from EuclideanDomain
- multiplyCoefficients: (Integer -> Coef, %) -> %
from UnivariateLaurentSeriesCategory Coef
- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- negative?: % -> Boolean if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
from OrderedRing
- nextItem: % -> Union(%, failed) if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has StepThrough
from StepThrough
- numer: % -> SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- numerator: % -> % if Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from UnivariatePowerSeriesCategory(Coef, Integer)
- order: (%, Integer) -> Integer
from UnivariatePowerSeriesCategory(Coef, Integer)
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if SparseUnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Float and Coef has Field
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if SparseUnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Integer and Coef has Field
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if Coef has Algebra Fraction Integer or Coef has CommutativeRing
from NonAssociativeAlgebra Coef
- pole?: % -> Boolean
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- positive?: % -> Boolean if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
from OrderedRing
- principalIdeal: List % -> Record(coef: List %, generator: %) if Coef has Field
from PrincipalIdealDomain
- quo: (%, %) -> % if Coef has Field
from EuclideanDomain
- rationalFunction: (%, Integer) -> Fraction Polynomial Coef if Coef has IntegralDomain
from UnivariateLaurentSeriesCategory Coef
- rationalFunction: (%, Integer, Integer) -> Fraction Polynomial Coef if Coef has IntegralDomain
from UnivariateLaurentSeriesCategory Coef
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if SparseUnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix SparseUnivariateTaylorSeries(Coef, var, cen), vec: Vector SparseUnivariateTaylorSeries(Coef, var, cen)) if Coef has Field
from LinearlyExplicitOver SparseUnivariateTaylorSeries(Coef, var, cen)
- reducedSystem: Matrix % -> Matrix Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
- reducedSystem: Matrix % -> Matrix SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from LinearlyExplicitOver SparseUnivariateTaylorSeries(Coef, var, cen)
- reductum: % -> %
from IndexedProductCategory(Coef, Integer)
- rem: (%, %) -> % if Coef has Field
from EuclideanDomain
- removeZeroes: % -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- removeZeroes: (Integer, %) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- retract: % -> Fraction Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Fraction Integer
- retract: % -> Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Integer
- retract: % -> SparseUnivariateTaylorSeries(Coef, var, cen)
from RetractableTo SparseUnivariateTaylorSeries(Coef, var, cen)
- retract: % -> Symbol if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
from RetractableTo Symbol
- retractIfCan: % -> Union(Fraction Integer, failed) if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Integer
- retractIfCan: % -> Union(SparseUnivariateTaylorSeries(Coef, var, cen), failed)
from RetractableTo SparseUnivariateTaylorSeries(Coef, var, cen)
- retractIfCan: % -> Union(Symbol, failed) if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- series: Stream Record(k: Integer, c: Coef) -> %
from UnivariateLaurentSeriesCategory Coef
- sign: % -> Integer if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
from OrderedRing
- sizeLess?: (%, %) -> Boolean if Coef has Field
from EuclideanDomain
- smaller?: (%, %) -> Boolean if SparseUnivariateTaylorSeries(Coef, var, cen) has Comparable and Coef has Field
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if SparseUnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- sqrt: % -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- squareFree: % -> Factored % if Coef has Field
- squareFreePart: % -> % if Coef has Field
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if SparseUnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- subtractIfCan: (%, %) -> Union(%, failed)
- taylor: % -> SparseUnivariateTaylorSeries(Coef, var, cen)
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- taylorIfCan: % -> Union(SparseUnivariateTaylorSeries(Coef, var, cen), failed)
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- taylorRep: % -> SparseUnivariateTaylorSeries(Coef, var, cen)
from UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
- terms: % -> Stream Record(k: Integer, c: Coef)
from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate: (%, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate: (%, Integer, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(Coef, Integer)
- wholePart: % -> SparseUnivariateTaylorSeries(Coef, var, cen) if SparseUnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain and Coef has Field
from QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, Integer)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
Algebra SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
BiModule(SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen)) if Coef has Field
canonicalsClosed if Coef has Field
canonicalUnitNormal if Coef has Field
CharacteristicNonZero if Coef has CharacteristicNonZero or SparseUnivariateTaylorSeries(Coef, var, cen) has CharacteristicNonZero and Coef has Field
CharacteristicZero if Coef has CharacteristicZero or SparseUnivariateTaylorSeries(Coef, var, cen) has CharacteristicZero and Coef has Field
CoercibleFrom Fraction Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
CoercibleFrom Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
CoercibleFrom SparseUnivariateTaylorSeries(Coef, var, cen)
CoercibleFrom Symbol if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
Comparable if SparseUnivariateTaylorSeries(Coef, var, cen) has Comparable and Coef has Field
ConvertibleTo DoubleFloat if SparseUnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
ConvertibleTo Float if SparseUnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
ConvertibleTo InputForm if SparseUnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo InputForm and Coef has Field
ConvertibleTo Pattern Float if SparseUnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Float and Coef has Field
ConvertibleTo Pattern Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Integer and Coef has Field
DifferentialExtension SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
DifferentialRing if Coef has *: (Integer, Coef) -> Coef or SparseUnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field
DivisionRing if Coef has Field
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
Eltable(%, %)
Eltable(SparseUnivariateTaylorSeries(Coef, var, cen), %) if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has Eltable(SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen))
EntireRing if Coef has IntegralDomain
EuclideanDomain if Coef has Field
Evalable SparseUnivariateTaylorSeries(Coef, var, cen) if SparseUnivariateTaylorSeries(Coef, var, cen) has Evalable SparseUnivariateTaylorSeries(Coef, var, cen) and Coef has Field
FullyEvalableOver SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
FullyLinearlyExplicitOver SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
FullyPatternMatchable SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, Integer)
InnerEvalable(SparseUnivariateTaylorSeries(Coef, var, cen), SparseUnivariateTaylorSeries(Coef, var, cen)) if SparseUnivariateTaylorSeries(Coef, var, cen) has Evalable SparseUnivariateTaylorSeries(Coef, var, cen) and Coef has Field
InnerEvalable(Symbol, SparseUnivariateTaylorSeries(Coef, var, cen)) if SparseUnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, SparseUnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
LeftModule SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
LeftOreRing if Coef has Field
LinearlyExplicitOver Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
LinearlyExplicitOver SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
Module SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
noZeroDivisors if Coef has IntegralDomain
OrderedAbelianGroup if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
OrderedAbelianMonoid if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
OrderedAbelianSemiGroup if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
OrderedCancellationAbelianMonoid if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
OrderedIntegralDomain if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
OrderedRing if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain
OrderedSet if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
PartialDifferentialRing Symbol if Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol or SparseUnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field
PartialOrder if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has OrderedSet
Patternable SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
PatternMatchable Float if SparseUnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Float and Coef has Field
PatternMatchable Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Integer and Coef has Field
PolynomialFactorizationExplicit if SparseUnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
PrincipalIdealDomain if Coef has Field
QuotientFieldCategory SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
RadicalCategory if Coef has Algebra Fraction Integer
RealConstant if SparseUnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
RetractableTo Fraction Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
RetractableTo Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
RetractableTo SparseUnivariateTaylorSeries(Coef, var, cen)
RetractableTo Symbol if SparseUnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
RightModule Integer if SparseUnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
RightModule SparseUnivariateTaylorSeries(Coef, var, cen) if Coef has Field
StepThrough if Coef has Field and SparseUnivariateTaylorSeries(Coef, var, cen) has StepThrough
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing
UniqueFactorizationDomain if Coef has Field
UnivariateLaurentSeriesCategory Coef
UnivariateLaurentSeriesConstructorCategory(Coef, SparseUnivariateTaylorSeries(Coef, var, cen))
UnivariatePowerSeriesCategory(Coef, Integer)