JuliaWSComplexΒΆ

jws.spad line 1097 [edit on github]

Julia Wolfram Symbolic complex numbers using Wolfram Symbolic Transport Protocol.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> % if JuliaWSReal has LinearlyExplicitOver Integer

from RightModule Integer

*: (%, JuliaWSReal) -> %

from RightModule JuliaWSReal

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (JuliaWSInteger, %) -> %

n * x multiplies n by x.

*: (JuliaWSReal, %) -> %

from LeftModule JuliaWSReal

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

=: (%, %) -> Boolean

from BasicType

^: (%, %) -> %

from ElementaryFunctionCategory

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from ComplexCategory JuliaWSReal

acos: % -> %

from ArcTrigonometricFunctionCategory

acosh: % -> %

from ArcHyperbolicFunctionCategory

acot: % -> %

from ArcTrigonometricFunctionCategory

acoth: % -> %

from ArcHyperbolicFunctionCategory

acsc: % -> %

from ArcTrigonometricFunctionCategory

acsch: % -> %

from ArcHyperbolicFunctionCategory

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

argument: % -> JuliaWSReal

from ComplexCategory JuliaWSReal

asec: % -> %

from ArcTrigonometricFunctionCategory

asech: % -> %

from ArcHyperbolicFunctionCategory

asin: % -> %

from ArcTrigonometricFunctionCategory

asinh: % -> %

from ArcHyperbolicFunctionCategory

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

atan: % -> %

from ArcTrigonometricFunctionCategory

atan: (%, %) -> %

atan(z1,z2) computes the arc tangent of z2/z1.

atanh: % -> %

from ArcHyperbolicFunctionCategory

basis: () -> Vector %

from FramedModule JuliaWSReal

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

charthRoot: % -> % if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

charthRoot: % -> Union(%, failed) if JuliaWSReal has CharacteristicNonZero or % has CharacteristicNonZero and JuliaWSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

Chi: % -> %

from LiouvillianFunctionCategory

Ci: % -> %

from LiouvillianFunctionCategory

coerce: % -> %

from Algebra %

coerce: % -> Complex DoubleFloat

coerce(z) coerces z to a FriCAS Complex(DoubleFloat).

coerce: % -> Complex JuliaFloat64

coerce(z) coerces z to a FriCAS Complex(JuliaFloat64).

coerce: % -> JuliaWSExpression

coerce(cplx) coerces cplx. Convenience function.

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Complex Integer -> %

coerce(z) coerce z. Convenience function. -- %i operations for example

coerce: Fraction Integer -> %

from Algebra Fraction Integer

coerce: Integer -> %

coerce(int): coerces int. Convenience function.

coerce: JuliaWSInteger -> %

coerce(int): coerces int. Convenience function.

coerce: JuliaWSReal -> %

from Algebra JuliaWSReal

commutator: (%, %) -> %

from NonAssociativeRng

complex: (JuliaWSReal, JuliaWSReal) -> %

complex(re,im) constructs a JuliaWSComplex from real part re and imaginary part im.

conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaWSReal has PolynomialFactorizationExplicit or JuliaWSReal has FiniteFieldCategory

from PolynomialFactorizationExplicit

conjugate: % -> %

from ComplexCategory JuliaWSReal

convert: % -> Complex DoubleFloat

from ConvertibleTo Complex DoubleFloat

convert: % -> Complex Float

from ConvertibleTo Complex Float

convert: % -> InputForm if JuliaWSReal has ConvertibleTo InputForm

from ConvertibleTo InputForm

convert: % -> Pattern Float

from ConvertibleTo Pattern Float

convert: % -> Pattern Integer if JuliaWSReal has ConvertibleTo Pattern Integer

from ConvertibleTo Pattern Integer

convert: % -> SparseUnivariatePolynomial JuliaWSReal

from ConvertibleTo SparseUnivariatePolynomial JuliaWSReal

convert: % -> String

from ConvertibleTo String

convert: % -> Vector JuliaWSReal

from FramedModule JuliaWSReal

convert: SparseUnivariatePolynomial JuliaWSReal -> %

from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

convert: Vector JuliaWSReal -> %

from FramedModule JuliaWSReal

coordinates: % -> Vector JuliaWSReal

from FramedModule JuliaWSReal

coordinates: (%, Vector %) -> Vector JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

coordinates: (Vector %, Vector %) -> Matrix JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

coordinates: Vector % -> Matrix JuliaWSReal

from FramedModule JuliaWSReal

cos: % -> %

from TrigonometricFunctionCategory

cosh: % -> %

from HyperbolicFunctionCategory

cot: % -> %

from TrigonometricFunctionCategory

coth: % -> %

from HyperbolicFunctionCategory

createPrimitiveElement: () -> % if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

csc: % -> %

from TrigonometricFunctionCategory

csch: % -> %

from HyperbolicFunctionCategory

D: % -> %

from DifferentialRing

D: (%, JuliaWSReal -> JuliaWSReal) -> %

from DifferentialExtension JuliaWSReal

D: (%, JuliaWSReal -> JuliaWSReal, NonNegativeInteger) -> %

from DifferentialExtension JuliaWSReal

D: (%, List Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, NonNegativeInteger) -> %

from DifferentialRing

D: (%, Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

D: (%, Symbol, NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

definingPolynomial: () -> SparseUnivariatePolynomial JuliaWSReal

from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

derivationCoordinates: (Vector %, JuliaWSReal -> JuliaWSReal) -> Matrix JuliaWSReal

from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

differentiate: % -> %

from DifferentialRing

differentiate: (%, JuliaWSReal -> JuliaWSReal) -> %

from DifferentialExtension JuliaWSReal

differentiate: (%, JuliaWSReal -> JuliaWSReal, NonNegativeInteger) -> %

from DifferentialExtension JuliaWSReal

differentiate: (%, List Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, NonNegativeInteger) -> %

from DifferentialRing

differentiate: (%, Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol

from PartialDifferentialRing Symbol

dilog: % -> %

from LiouvillianFunctionCategory

discreteLog: % -> NonNegativeInteger if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaWSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

discriminant: () -> JuliaWSReal

from FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

discriminant: Vector % -> JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

Ei: % -> %

from LiouvillianFunctionCategory

elt: (%, JuliaWSReal) -> % if JuliaWSReal has Eltable(JuliaWSReal, JuliaWSReal)

from Eltable(JuliaWSReal, %)

enumerate: () -> List % if JuliaWSReal has Finite

from Finite

erf: % -> %

from LiouvillianFunctionCategory

erf: (%, %) -> %

erfc: % -> %

erfi: % -> %

from LiouvillianFunctionCategory

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

eval: (%, Equation JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal

from Evalable JuliaWSReal

eval: (%, JuliaWSReal, JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal

from InnerEvalable(JuliaWSReal, JuliaWSReal)

eval: (%, List Equation JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal

from Evalable JuliaWSReal

eval: (%, List JuliaWSReal, List JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal

from InnerEvalable(JuliaWSReal, JuliaWSReal)

eval: (%, List Symbol, List JuliaWSReal) -> % if JuliaWSReal has InnerEvalable(Symbol, JuliaWSReal)

from InnerEvalable(Symbol, JuliaWSReal)

eval: (%, Symbol, JuliaWSReal) -> % if JuliaWSReal has InnerEvalable(Symbol, JuliaWSReal)

from InnerEvalable(Symbol, JuliaWSReal)

exp: % -> %

from ElementaryFunctionCategory

exp: () -> %

exp() returns the JuliaWSAPReal β„― (%e or exp(1)).

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

exquo: (%, JuliaWSReal) -> Union(%, failed)

from ComplexCategory JuliaWSReal

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

fresnelC: % -> %

from LiouvillianFunctionCategory

fresnelS: % -> %

from LiouvillianFunctionCategory

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

generator: () -> %

from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

hash: % -> SingleInteger if JuliaWSReal has Hashable

from Hashable

hashUpdate!: (HashState, %) -> HashState if JuliaWSReal has Hashable

from Hashable

imag: % -> JuliaWSReal

from ComplexCategory JuliaWSReal

imaginary: () -> %

from ComplexCategory JuliaWSReal

index: PositiveInteger -> % if JuliaWSReal has Finite

from Finite

init: % if JuliaWSReal has FiniteFieldCategory

from StepThrough

integral: (%, SegmentBinding %) -> %

from PrimitiveFunctionCategory

integral: (%, Symbol) -> %

from PrimitiveFunctionCategory

inv: % -> %

from DivisionRing

jlAbout: % -> Void

from JuliaObjectType

jlApply: (String, %) -> %

from JuliaObjectType

jlApply: (String, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %) -> %

from JuliaObjectType

jlApply: (String, %, %, %, %, %, %) -> %

from JuliaObjectType

jlApprox?: (%, %) -> Boolean

jlApprox?(x,y) computes inexact equality comparison with WS default parameters (Equal).

jlEval: % -> %

from JuliaWSObject

jlHead: % -> JuliaWSSymbol

from JuliaWSObject

jlId: % -> String

from JuliaObjectType

jlNumeric: % -> %

from JuliaWSObject

jlNumeric: (%, PositiveInteger) -> %

from JuliaWSObject

jlRef: % -> SExpression

from JuliaObjectType

jlref: String -> %

from JuliaObjectType

jlSymbolic: % -> String

from JuliaWSObject

jlType: % -> String

from JuliaObjectType

jWSComplex: (JuliaWSReal, JuliaWSReal) -> %

jWSComplex(re, im) constructs a JuliaWSComplex from real part re and imaginary part im.

jWSComplex: JuliaWSReal -> %

jWSComplex(re) constructs a JuliaWSComplex with real part re.

jWSInterpret: (String, String) -> %

from JuliaWSObject

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

li: % -> %

from LiouvillianFunctionCategory

lift: % -> SparseUnivariatePolynomial JuliaWSReal

from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

log10: % -> %

log10(z) compute logarithm of z in base 10.

log2: % -> %

log2(z) compute logarithm of z in base 2.

log: % -> %

from ElementaryFunctionCategory

lookup: % -> PositiveInteger if JuliaWSReal has Finite

from Finite

map: (JuliaWSReal -> JuliaWSReal, %) -> %

from FullyEvalableOver JuliaWSReal

minimalPolynomial: % -> SparseUnivariatePolynomial JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

mutable?: % -> Boolean

from JuliaObjectType

nextItem: % -> Union(%, failed) if JuliaWSReal has FiniteFieldCategory

from StepThrough

norm: % -> JuliaWSReal

from ComplexCategory JuliaWSReal

nothing?: % -> Boolean

from JuliaObjectType

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from JuliaRing

opposite?: (%, %) -> Boolean

from AbelianMonoid

order: % -> OnePointCompletion PositiveInteger if JuliaWSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

order: % -> PositiveInteger if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)

from PatternMatchable Float

patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaWSReal has PatternMatchable Integer

from PatternMatchable Integer

pi: () -> %

from TranscendentalFunctionCategory

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Fraction Integer

polarCoordinates: % -> Record(r: JuliaWSReal, phi: JuliaWSReal)

from ComplexCategory JuliaWSReal

prime?: % -> Boolean

from UniqueFactorizationDomain

primeFrobenius: % -> % if JuliaWSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primeFrobenius: (%, NonNegativeInteger) -> % if JuliaWSReal has FiniteFieldCategory

from FieldOfPrimeCharacteristic

primitive?: % -> Boolean if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

primitiveElement: () -> % if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

random: () -> % if JuliaWSReal has Finite

from Finite

rank: () -> PositiveInteger

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

rational?: % -> Boolean if JuliaWSReal has IntegerNumberSystem

from ComplexCategory JuliaWSReal

rational: % -> Fraction Integer if JuliaWSReal has IntegerNumberSystem

from ComplexCategory JuliaWSReal

rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaWSReal has IntegerNumberSystem

from ComplexCategory JuliaWSReal

real: % -> JuliaWSReal

from ComplexCategory JuliaWSReal

recip: % -> Union(%, failed)

from MagmaWithUnit

reduce: Fraction SparseUnivariatePolynomial JuliaWSReal -> Union(%, failed)

from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

reduce: SparseUnivariatePolynomial JuliaWSReal -> %

from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaWSReal has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaWSReal, vec: Vector JuliaWSReal)

from LinearlyExplicitOver JuliaWSReal

reducedSystem: Matrix % -> Matrix Integer if JuliaWSReal has LinearlyExplicitOver Integer

from LinearlyExplicitOver Integer

reducedSystem: Matrix % -> Matrix JuliaWSReal

from LinearlyExplicitOver JuliaWSReal

regularRepresentation: % -> Matrix JuliaWSReal

from FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

regularRepresentation: (%, Vector %) -> Matrix JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

rem: (%, %) -> %

from EuclideanDomain

representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

represents: (Vector JuliaWSReal, Vector %) -> %

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

represents: Vector JuliaWSReal -> %

from FramedModule JuliaWSReal

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retract: % -> JuliaWSReal

from RetractableTo JuliaWSReal

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

retractIfCan: % -> Union(JuliaWSReal, failed)

from RetractableTo JuliaWSReal

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

sample: %

from AbelianMonoid

sec: % -> %

from TrigonometricFunctionCategory

sech: % -> %

from HyperbolicFunctionCategory

Shi: % -> %

from LiouvillianFunctionCategory

Si: % -> %

from LiouvillianFunctionCategory

sin: % -> %

from TrigonometricFunctionCategory

sinc: % -> %

sinc(z) compues the unormalized sinc of z, sin(z)/z and 0 if z = 0.

sinh: % -> %

from HyperbolicFunctionCategory

size: () -> NonNegativeInteger if JuliaWSReal has Finite

from Finite

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaWSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

sqrt: % -> %

from RadicalCategory

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSReal has PolynomialFactorizationExplicit

from PolynomialFactorizationExplicit

string: % -> String

from JuliaObjectType

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaWSReal has FiniteFieldCategory

from FiniteFieldCategory

tan: % -> %

from TrigonometricFunctionCategory

tanh: % -> %

from HyperbolicFunctionCategory

toString: % -> String

from JuliaWSObject

toString: (%, JuliaWSExpression) -> String

toString(expr, form) returns the string representation of expr with WS language format form.

trace: % -> JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

traceMatrix: () -> Matrix JuliaWSReal

from FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

traceMatrix: Vector % -> Matrix JuliaWSReal

from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

urand01: () -> %

urand01() returns a unit square random complex number.

zero?: % -> Boolean

from JuliaRing

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra JuliaWSReal

arbitraryPrecision if JuliaWSReal has arbitraryPrecision

ArcHyperbolicFunctionCategory

ArcTrigonometricFunctionCategory

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(JuliaWSReal, JuliaWSReal)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicNonZero if JuliaWSReal has CharacteristicNonZero

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleFrom JuliaWSReal

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

ComplexCategory JuliaWSReal

ConvertibleTo Complex DoubleFloat

ConvertibleTo Complex Float

ConvertibleTo InputForm if JuliaWSReal has ConvertibleTo InputForm

ConvertibleTo Pattern Float

ConvertibleTo Pattern Integer if JuliaWSReal has ConvertibleTo Pattern Integer

ConvertibleTo SparseUnivariatePolynomial JuliaWSReal

ConvertibleTo String

DifferentialExtension JuliaWSReal

DifferentialRing

DivisionRing

ElementaryFunctionCategory

Eltable(JuliaWSReal, %) if JuliaWSReal has Eltable(JuliaWSReal, JuliaWSReal)

EntireRing

EuclideanDomain

Evalable JuliaWSReal if JuliaWSReal has Evalable JuliaWSReal

Field

FieldOfPrimeCharacteristic if JuliaWSReal has FiniteFieldCategory

Finite if JuliaWSReal has Finite

FiniteFieldCategory if JuliaWSReal has FiniteFieldCategory

FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

FramedModule JuliaWSReal

FullyEvalableOver JuliaWSReal

FullyLinearlyExplicitOver JuliaWSReal

FullyPatternMatchable JuliaWSReal

FullyRetractableTo JuliaWSReal

GcdDomain

Hashable if JuliaWSReal has Hashable

HyperbolicFunctionCategory

InnerEvalable(JuliaWSReal, JuliaWSReal) if JuliaWSReal has Evalable JuliaWSReal

InnerEvalable(Symbol, JuliaWSReal) if JuliaWSReal has InnerEvalable(Symbol, JuliaWSReal)

IntegralDomain

JuliaObjectRing

JuliaObjectType

JuliaRing

JuliaType

JuliaWSNumber

JuliaWSObject

JuliaWSRing

LeftModule %

LeftModule Fraction Integer

LeftModule JuliaWSReal

LeftOreRing

LinearlyExplicitOver Integer if JuliaWSReal has LinearlyExplicitOver Integer

LinearlyExplicitOver JuliaWSReal

LiouvillianFunctionCategory

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module JuliaWSReal

MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)

Monoid

multiplicativeValuation if JuliaWSReal has IntegerNumberSystem

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra JuliaWSReal

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

PartialDifferentialRing Symbol if JuliaWSReal has PartialDifferentialRing Symbol

Patternable JuliaWSReal

PatternMatchable Float

PatternMatchable Integer if JuliaWSReal has PatternMatchable Integer

PolynomialFactorizationExplicit if JuliaWSReal has PolynomialFactorizationExplicit

PrimitiveFunctionCategory

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RetractableTo JuliaWSReal

RightModule %

RightModule Fraction Integer

RightModule Integer if JuliaWSReal has LinearlyExplicitOver Integer

RightModule JuliaWSReal

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

StepThrough if JuliaWSReal has FiniteFieldCategory

TranscendentalFunctionCategory

TrigonometricFunctionCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown