JuliaWSComplexΒΆ
jws.spad line 1097 [edit on github]
Julia Wolfram Symbolic complex numbers using Wolfram Symbolic Transport Protocol.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if JuliaWSReal has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, JuliaWSReal) -> %
from RightModule JuliaWSReal
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (JuliaWSInteger, %) -> %
n * x
multipliesn
byx
.- *: (JuliaWSReal, %) -> %
from LeftModule JuliaWSReal
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> JuliaWSReal
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, %) -> %
atan(z1,z2)
computes the arc tangent ofz2/z1
.
- atanh: % -> %
- basis: () -> Vector %
from FramedModule JuliaWSReal
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial JuliaWSReal
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- charthRoot: % -> % if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- charthRoot: % -> Union(%, failed) if JuliaWSReal has CharacteristicNonZero or % has CharacteristicNonZero and JuliaWSReal has PolynomialFactorizationExplicit
- Chi: % -> %
- Ci: % -> %
- coerce: % -> Complex DoubleFloat
coerce(z)
coercesz
to a FriCAS Complex(DoubleFloat).
- coerce: % -> Complex JuliaFloat64
coerce(z)
coercesz
to a FriCAS Complex(JuliaFloat64
).
- coerce: % -> JuliaWSExpression
coerce(cplx)
coercescplx
. Convenience function.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Complex Integer -> %
coerce(z)
coercez
. Convenience function.--
%i
operations for example- coerce: Fraction Integer -> %
- coerce: Integer -> %
coerce(int)
: coercesint
. Convenience function.
- coerce: JuliaWSInteger -> %
coerce(int)
: coercesint
. Convenience function.- coerce: JuliaWSReal -> %
from Algebra JuliaWSReal
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (JuliaWSReal, JuliaWSReal) -> %
complex(re,im)
constructs a JuliaWSComplex from real partre
and imaginary partim
.
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaWSReal has PolynomialFactorizationExplicit or JuliaWSReal has FiniteFieldCategory
- conjugate: % -> %
- convert: % -> Complex DoubleFloat
- convert: % -> Complex Float
from ConvertibleTo Complex Float
- convert: % -> InputForm if JuliaWSReal has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if JuliaWSReal has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> SparseUnivariatePolynomial JuliaWSReal
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector JuliaWSReal
from FramedModule JuliaWSReal
- convert: SparseUnivariatePolynomial JuliaWSReal -> %
from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- convert: Vector JuliaWSReal -> %
from FramedModule JuliaWSReal
- coordinates: % -> Vector JuliaWSReal
from FramedModule JuliaWSReal
- coordinates: (%, Vector %) -> Vector JuliaWSReal
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- coordinates: (Vector %, Vector %) -> Matrix JuliaWSReal
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- coordinates: Vector % -> Matrix JuliaWSReal
from FramedModule JuliaWSReal
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- createPrimitiveElement: () -> % if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, JuliaWSReal -> JuliaWSReal) -> %
- D: (%, JuliaWSReal -> JuliaWSReal, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- definingPolynomial: () -> SparseUnivariatePolynomial JuliaWSReal
from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- derivationCoordinates: (Vector %, JuliaWSReal -> JuliaWSReal) -> Matrix JuliaWSReal
from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, JuliaWSReal -> JuliaWSReal) -> %
- differentiate: (%, JuliaWSReal -> JuliaWSReal, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaWSReal has PartialDifferentialRing Symbol
- dilog: % -> %
- discreteLog: % -> NonNegativeInteger if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed) if JuliaWSReal has FiniteFieldCategory
- discriminant: () -> JuliaWSReal
from FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- discriminant: Vector % -> JuliaWSReal
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- Ei: % -> %
- elt: (%, JuliaWSReal) -> % if JuliaWSReal has Eltable(JuliaWSReal, JuliaWSReal)
from Eltable(JuliaWSReal, %)
- enumerate: () -> List % if JuliaWSReal has Finite
from Finite
- erf: % -> %
erf: (%, %) -> %
erfc: % -> %
- erfi: % -> %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal
from Evalable JuliaWSReal
- eval: (%, JuliaWSReal, JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal
from InnerEvalable(JuliaWSReal, JuliaWSReal)
- eval: (%, List Equation JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal
from Evalable JuliaWSReal
- eval: (%, List JuliaWSReal, List JuliaWSReal) -> % if JuliaWSReal has Evalable JuliaWSReal
from InnerEvalable(JuliaWSReal, JuliaWSReal)
- eval: (%, List Symbol, List JuliaWSReal) -> % if JuliaWSReal has InnerEvalable(Symbol, JuliaWSReal)
from InnerEvalable(Symbol, JuliaWSReal)
- eval: (%, Symbol, JuliaWSReal) -> % if JuliaWSReal has InnerEvalable(Symbol, JuliaWSReal)
from InnerEvalable(Symbol, JuliaWSReal)
- exp: % -> %
- exp: () -> %
exp()
returns the JuliaWSAPRealβ―
(%e
or exp(1)).
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- exquo: (%, JuliaWSReal) -> Union(%, failed)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSReal has PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger) if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSReal has PolynomialFactorizationExplicit
- fresnelC: % -> %
- fresnelS: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- hash: % -> SingleInteger if JuliaWSReal has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if JuliaWSReal has Hashable
from Hashable
- imag: % -> JuliaWSReal
- imaginary: () -> %
- index: PositiveInteger -> % if JuliaWSReal has Finite
from Finite
- init: % if JuliaWSReal has FiniteFieldCategory
from StepThrough
- integral: (%, SegmentBinding %) -> %
- integral: (%, Symbol) -> %
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlApprox?: (%, %) -> Boolean
jlApprox?(x,y)
computes inexact equality comparison withWS
default parameters (Equal).
- jlEval: % -> %
from JuliaWSObject
- jlHead: % -> JuliaWSSymbol
from JuliaWSObject
- jlId: % -> String
from JuliaObjectType
- jlNumeric: % -> %
from JuliaWSObject
- jlNumeric: (%, PositiveInteger) -> %
from JuliaWSObject
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlSymbolic: % -> String
from JuliaWSObject
- jlType: % -> String
from JuliaObjectType
- jWSComplex: (JuliaWSReal, JuliaWSReal) -> %
jWSComplex(re, im)
constructs a JuliaWSComplex from real partre
and imaginary part im.
- jWSComplex: JuliaWSReal -> %
jWSComplex(re)
constructs a JuliaWSComplex with real partre
.
- jWSInterpret: (String, String) -> %
from JuliaWSObject
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- li: % -> %
- lift: % -> SparseUnivariatePolynomial JuliaWSReal
from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- log10: % -> %
log10(z)
compute logarithm ofz
in base 10.
- log2: % -> %
log2(z)
compute logarithm ofz
in base 2.
- log: % -> %
- lookup: % -> PositiveInteger if JuliaWSReal has Finite
from Finite
- map: (JuliaWSReal -> JuliaWSReal, %) -> %
- minimalPolynomial: % -> SparseUnivariatePolynomial JuliaWSReal
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- nextItem: % -> Union(%, failed) if JuliaWSReal has FiniteFieldCategory
from StepThrough
- norm: % -> JuliaWSReal
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> OnePointCompletion PositiveInteger if JuliaWSReal has FiniteFieldCategory
- order: % -> PositiveInteger if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JuliaWSReal has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- polarCoordinates: % -> Record(r: JuliaWSReal, phi: JuliaWSReal)
- primeFrobenius: % -> % if JuliaWSReal has FiniteFieldCategory
- primeFrobenius: (%, NonNegativeInteger) -> % if JuliaWSReal has FiniteFieldCategory
- primitive?: % -> Boolean if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- primitiveElement: () -> % if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- random: () -> % if JuliaWSReal has Finite
from Finite
- rank: () -> PositiveInteger
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- rational?: % -> Boolean if JuliaWSReal has IntegerNumberSystem
- rational: % -> Fraction Integer if JuliaWSReal has IntegerNumberSystem
- rationalIfCan: % -> Union(Fraction Integer, failed) if JuliaWSReal has IntegerNumberSystem
- real: % -> JuliaWSReal
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: Fraction SparseUnivariatePolynomial JuliaWSReal -> Union(%, failed)
from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- reduce: SparseUnivariatePolynomial JuliaWSReal -> %
from MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaWSReal has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaWSReal, vec: Vector JuliaWSReal)
- reducedSystem: Matrix % -> Matrix Integer if JuliaWSReal has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaWSReal
- regularRepresentation: % -> Matrix JuliaWSReal
from FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- regularRepresentation: (%, Vector %) -> Matrix JuliaWSReal
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- rem: (%, %) -> %
from EuclideanDomain
- representationType: () -> Union(prime, polynomial, normal, cyclic) if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- represents: (Vector JuliaWSReal, Vector %) -> %
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- represents: Vector JuliaWSReal -> %
from FramedModule JuliaWSReal
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> JuliaWSReal
from RetractableTo JuliaWSReal
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(JuliaWSReal, failed)
from RetractableTo JuliaWSReal
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- Shi: % -> %
- Si: % -> %
- sin: % -> %
- sinc: % -> %
sinc(z)
compues the unormalized sinc ofz
, sin(z
)/z
and 0 ifz
= 0.
- sinh: % -> %
- size: () -> NonNegativeInteger if JuliaWSReal has Finite
from Finite
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaWSReal has PolynomialFactorizationExplicit
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSReal has PolynomialFactorizationExplicit
- string: % -> String
from JuliaObjectType
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger) if JuliaWSReal has FiniteFieldCategory
from FiniteFieldCategory
- tan: % -> %
- tanh: % -> %
- toString: % -> String
from JuliaWSObject
- toString: (%, JuliaWSExpression) -> String
toString(expr, form)
returns the string representation ofexpr
withWS
language format form.
- traceMatrix: () -> Matrix JuliaWSReal
from FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- traceMatrix: Vector % -> Matrix JuliaWSReal
from FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()
returns a unit square random complex number.
Algebra %
arbitraryPrecision if JuliaWSReal has arbitraryPrecision
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JuliaWSReal, JuliaWSReal)
CharacteristicNonZero if JuliaWSReal has CharacteristicNonZero
CoercibleFrom Fraction Integer
ConvertibleTo Complex DoubleFloat
ConvertibleTo InputForm if JuliaWSReal has ConvertibleTo InputForm
ConvertibleTo Pattern Integer if JuliaWSReal has ConvertibleTo Pattern Integer
ConvertibleTo SparseUnivariatePolynomial JuliaWSReal
DifferentialExtension JuliaWSReal
Eltable(JuliaWSReal, %) if JuliaWSReal has Eltable(JuliaWSReal, JuliaWSReal)
Evalable JuliaWSReal if JuliaWSReal has Evalable JuliaWSReal
FieldOfPrimeCharacteristic if JuliaWSReal has FiniteFieldCategory
Finite if JuliaWSReal has Finite
FiniteFieldCategory if JuliaWSReal has FiniteFieldCategory
FiniteRankAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
FramedAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
FullyLinearlyExplicitOver JuliaWSReal
FullyPatternMatchable JuliaWSReal
FullyRetractableTo JuliaWSReal
Hashable if JuliaWSReal has Hashable
InnerEvalable(JuliaWSReal, JuliaWSReal) if JuliaWSReal has Evalable JuliaWSReal
InnerEvalable(Symbol, JuliaWSReal) if JuliaWSReal has InnerEvalable(Symbol, JuliaWSReal)
LinearlyExplicitOver Integer if JuliaWSReal has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaWSReal
Module %
MonogenicAlgebra(JuliaWSReal, SparseUnivariatePolynomial JuliaWSReal)
multiplicativeValuation if JuliaWSReal has IntegerNumberSystem
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JuliaWSReal
PartialDifferentialRing Symbol if JuliaWSReal has PartialDifferentialRing Symbol
PatternMatchable Integer if JuliaWSReal has PatternMatchable Integer
PolynomialFactorizationExplicit if JuliaWSReal has PolynomialFactorizationExplicit
RetractableTo Fraction Integer
RightModule Integer if JuliaWSReal has LinearlyExplicitOver Integer
StepThrough if JuliaWSReal has FiniteFieldCategory