JuliaWSReal¶
jws.spad line 411 [edit on github]
Julia Wolfram Symbolic real numbers using Wolfram Symbolic Transport Protocol. Precision is determined during coercion. Machine precision will be used for jWSReal("3
.14”) whereas jWSReal("3
.14159265358979323846264338327950288419716939937510”) will have arbitrary precision of about 50 digits.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (%, Integer) -> %
from FloatingPointSystem
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from OrderedRing
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atan: (%, %) -> %
atan(x,y)
computes the arc tangent ofy/x
.
- atanh: % -> %
- base: () -> PositiveInteger
from FloatingPointSystem
- bits: () -> PositiveInteger
from FloatingPointSystem
- ceiling: % -> %
from RealNumberSystem
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- Chi: % -> %
- Ci: % -> %
- coerce: % -> DoubleFloat
coerce(r)
coercesr
to a DoubleFloat.
- coerce: % -> JuliaFloat
coerce(x)
convertsx
as a JuliaFloat.
- coerce: % -> JuliaFloat64
coerce(r)
coercer
to aJuliaFloat64
.
- coerce: % -> JuliaWSExpression
coerce(x)
coercex
to a JuliaWSExpression.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: DoubleFloat -> %
coerce(x)
convertsx
as a JuliaWSReal.
- coerce: Float -> %
coerce(x)
convertsx
as a JuliaWSReal.- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: JuliaFloat -> %
coerce(x)
convertsx
as a JuliaWSReal.
- coerce: JuliaFloat64 -> %
coerce(x)
convertsx
as a JuliaWSReal.
- coerce: String -> %
coerce(str)
constructstr
as a JuliaWSReal.
- commutator: (%, %) -> %
from NonAssociativeRng
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> String
from ConvertibleTo String
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
- D: % -> %
from DifferentialRing
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- digits: () -> PositiveInteger
from FloatingPointSystem
- dilog: % -> %
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- Ei: % -> %
- erf: % -> %
- erf: (%, %) -> %
erf(x)
computes the error function ofx
.
- erfc: % -> %
erfc(x)
computes the complementary error function ofx
.
- erfi: % -> %
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- exp: % -> %
- exp: () -> %
exp()
returns the JuliaWSAPRealℯ
(%e
or exp(1)).
- exponent: % -> Integer
from FloatingPointSystem
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- float: (Integer, Integer) -> %
from FloatingPointSystem
- float: (Integer, Integer, PositiveInteger) -> %
from FloatingPointSystem
- floor: % -> %
from RealNumberSystem
- fractionPart: % -> %
from RealNumberSystem
- fresnelC: % -> %
- fresnelS: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- integerPart: % -> JuliaWSInteger
integerPart(x)
returns the integer part ofx
.
- integral: (%, SegmentBinding %) -> %
- integral: (%, Symbol) -> %
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlApprox?: (%, %) -> Boolean
jlApprox?(x,y)
computes inexact equality comparison withWS
default parameters (Equal).
- jlEval: % -> %
from JuliaWSObject
- jlHead: % -> JuliaWSSymbol
from JuliaWSObject
- jlId: % -> String
from JuliaObjectType
- jlNumeric: % -> %
from JuliaWSObject
- jlNumeric: (%, PositiveInteger) -> %
from JuliaWSObject
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlSymbolic: % -> String
from JuliaWSObject
- jlType: % -> String
from JuliaObjectType
- jWSInterpret: (String, String) -> %
from JuliaWSObject
- jWSReal: DoubleFloat -> %
jWSReal(z)
coerces the integerz
to a JuliaWSReal.
- jWSReal: Float -> %
jWSReal(z)
coerces the integerz
to a JuliaWSReal.
- jWSReal: Integer -> %
jWSReal(z)
coerces the integerz
to a JuliaWSReal.
- jWSReal: JuliaFloat64 -> %
jWSReal(z)
coerces the integerz
to a JuliaWSReal.
- jWSReal: String -> %
jWSReal(str)
constructsstr
as a JuliaWSReal.
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- li: % -> %
- log10: % -> %
log10(x)
compute logarithm ofx
in base 10.
- log2: % -> %
log2(x)
compute logarithm ofx
in base 2.
- log: % -> %
- mantissa: % -> Integer
from FloatingPointSystem
- max: (%, %) -> %
from OrderedSet
- max: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision
from FloatingPointSystem
- min: (%, %) -> %
from OrderedSet
- min: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision
from FloatingPointSystem
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- negative?: % -> Boolean
from OrderedRing
- norm: % -> %
from RealNumberSystem
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from FloatingPointSystem
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
- positive?: % -> Boolean
from OrderedRing
- precision: () -> PositiveInteger
from FloatingPointSystem
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- rationalApproximation: % -> JuliaWSRational
rationalApproximation(x)
try to find a rational approximation ofx
. Error ifx
can not be retracted.
- rationalApproximation: (%, %) -> JuliaWSRational
rationalApproximation(x, dx)
returns a rational approximation ofx
within tolerancedx
. Ifdx
= 0, converts it anyway.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- round: % -> %
from RealNumberSystem
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- Shi: % -> %
- Si: % -> %
- sign: % -> Integer
from OrderedRing
- sin: % -> %
- sinc: % -> %
sinc(x)
compues the unormalized sinc ofx
, sin(x
)/x
.
- sinh: % -> %
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- string: % -> String
from JuliaObjectType
- subtractIfCan: (%, %) -> Union(%, failed)
- tan: % -> %
- tanh: % -> %
- toString: % -> String
from JuliaWSObject
- toString: (%, NonNegativeInteger) -> String
from FloatingPointSystem
- truncate: % -> %
from RealNumberSystem
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- urand01: () -> %
urand01()
returns a uniformly distributed random number in the range 0..1.
- wholePart: % -> Integer
from RealNumberSystem
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid
RetractableTo Fraction Integer