JuliaWSRationalΒΆ
jws.spad line 305 [edit on github]
Julia Wolfram Symbolic rational numbers using Wolfram Symbolic Transport Protocol.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if JuliaWSInteger has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, JuliaWSInteger) -> %
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (JuliaWSInteger, %) -> %
from LeftModule JuliaWSInteger
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (JuliaWSInteger, JuliaWSInteger) -> %
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and JuliaWSInteger has PolynomialFactorizationExplicit or JuliaWSInteger has CharacteristicNonZero
- coerce: % -> JuliaWSExpression
coerce(q)
coercesq
. Convenience function.- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> %
- coerce: Integer -> %
coerce(z)
: coerces(z
). Convenience function.- coerce: JuliaWSInteger -> %
from Algebra JuliaWSInteger
- coerce: Symbol -> % if JuliaWSInteger has RetractableTo Symbol
from CoercibleFrom Symbol
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and JuliaWSInteger has PolynomialFactorizationExplicit
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> Fraction Integer
convert(q)
returnsq
as a Fraction(Integer)- convert: % -> InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if JuliaWSInteger has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> String
from ConvertibleTo String
- D: % -> %
from DifferentialRing
- D: (%, JuliaWSInteger -> JuliaWSInteger) -> %
- D: (%, JuliaWSInteger -> JuliaWSInteger, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, Symbol) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- denominator: % -> %
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, JuliaWSInteger -> JuliaWSInteger) -> %
- differentiate: (%, JuliaWSInteger -> JuliaWSInteger, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, Symbol) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if JuliaWSInteger has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (%, JuliaWSInteger) -> % if JuliaWSInteger has Eltable(JuliaWSInteger, JuliaWSInteger)
from Eltable(JuliaWSInteger, %)
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, Equation JuliaWSInteger) -> % if JuliaWSInteger has Evalable JuliaWSInteger
from Evalable JuliaWSInteger
- eval: (%, JuliaWSInteger, JuliaWSInteger) -> % if JuliaWSInteger has Evalable JuliaWSInteger
- eval: (%, List Equation JuliaWSInteger) -> % if JuliaWSInteger has Evalable JuliaWSInteger
from Evalable JuliaWSInteger
- eval: (%, List JuliaWSInteger, List JuliaWSInteger) -> % if JuliaWSInteger has Evalable JuliaWSInteger
- eval: (%, List Symbol, List JuliaWSInteger) -> % if JuliaWSInteger has InnerEvalable(Symbol, JuliaWSInteger)
from InnerEvalable(Symbol, JuliaWSInteger)
- eval: (%, Symbol, JuliaWSInteger) -> % if JuliaWSInteger has InnerEvalable(Symbol, JuliaWSInteger)
from InnerEvalable(Symbol, JuliaWSInteger)
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSInteger has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSInteger has PolynomialFactorizationExplicit
- fractionPart: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- init: %
from StepThrough
- inv: % -> %
from DivisionRing
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlEval: % -> %
from JuliaWSObject
- jlHead: % -> JuliaWSSymbol
from JuliaWSObject
- jlId: % -> String
from JuliaObjectType
- jlNumeric: % -> %
from JuliaWSObject
- jlNumeric: (%, PositiveInteger) -> %
from JuliaWSObject
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlSymbolic: % -> String
from JuliaWSObject
- jlType: % -> String
from JuliaObjectType
- jWSInterpret: (String, String) -> %
from JuliaWSObject
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (JuliaWSInteger -> JuliaWSInteger, %) -> %
- max: (%, %) -> %
from OrderedSet
- min: (%, %) -> %
from OrderedSet
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
- negative?: % -> Boolean
from OrderedRing
- nextItem: % -> Union(%, failed)
from StepThrough
- nothing?: % -> Boolean
from JuliaObjectType
- numerator: % -> %
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if JuliaWSInteger has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
- positive?: % -> Boolean
from OrderedRing
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if JuliaWSInteger has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix JuliaWSInteger, vec: Vector JuliaWSInteger)
- reducedSystem: Matrix % -> Matrix Integer if JuliaWSInteger has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix JuliaWSInteger
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retract: % -> JuliaWSInteger
- retract: % -> Symbol if JuliaWSInteger has RetractableTo Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- retractIfCan: % -> Union(JuliaWSInteger, failed)
- retractIfCan: % -> Union(Symbol, failed) if JuliaWSInteger has RetractableTo Symbol
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sign: % -> Integer
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if JuliaWSInteger has PolynomialFactorizationExplicit
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if JuliaWSInteger has PolynomialFactorizationExplicit
- string: % -> String
from JuliaObjectType
- subtractIfCan: (%, %) -> Union(%, failed)
- toString: % -> String
from JuliaWSObject
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(JuliaWSInteger, JuliaWSInteger)
CharacteristicNonZero if JuliaWSInteger has CharacteristicNonZero
CoercibleFrom Fraction Integer
CoercibleFrom Symbol if JuliaWSInteger has RetractableTo Symbol
ConvertibleTo Pattern Float if JuliaWSInteger has ConvertibleTo Pattern Float
DifferentialExtension JuliaWSInteger
Eltable(JuliaWSInteger, %) if JuliaWSInteger has Eltable(JuliaWSInteger, JuliaWSInteger)
Evalable JuliaWSInteger if JuliaWSInteger has Evalable JuliaWSInteger
FullyEvalableOver JuliaWSInteger
FullyLinearlyExplicitOver JuliaWSInteger
FullyPatternMatchable JuliaWSInteger
InnerEvalable(JuliaWSInteger, JuliaWSInteger) if JuliaWSInteger has Evalable JuliaWSInteger
InnerEvalable(Symbol, JuliaWSInteger) if JuliaWSInteger has InnerEvalable(Symbol, JuliaWSInteger)
LinearlyExplicitOver Integer if JuliaWSInteger has LinearlyExplicitOver Integer
LinearlyExplicitOver JuliaWSInteger
Module %
NonAssociativeAlgebra Fraction Integer
NonAssociativeAlgebra JuliaWSInteger
OrderedCancellationAbelianMonoid
PartialDifferentialRing Symbol if JuliaWSInteger has PartialDifferentialRing Symbol
PatternMatchable Float if JuliaWSInteger has PatternMatchable Float
PolynomialFactorizationExplicit if JuliaWSInteger has PolynomialFactorizationExplicit
QuotientFieldCategory JuliaWSInteger
RetractableTo Fraction Integer
RetractableTo Symbol if JuliaWSInteger has RetractableTo Symbol
RightModule Integer if JuliaWSInteger has LinearlyExplicitOver Integer