NemoExactComplexFieldΒΆ
jnemo.spad line 1212 [edit on github]
NemoExactComplexField implements exact complex field arithmetic using the Nemo package. Reference: https://nemocas.github.io/Nemo.jl
See https://flintlib.org/doc/introduction_calcium.html for the C
library.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
*: (%, Integer) -> %
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
/: (%, Integer) -> %
/: (Integer, %) -> %
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- acos: % -> %
acos: (%, JuliaSymbol) -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
algebraic?: % -> Boolean
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- argument: % -> %
from ComplexCategory %
- asec: % -> %
- asech: % -> %
- asin: % -> %
asin: (%, JuliaSymbol) -> %
- asinh: % -> %
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
atan: (%, JuliaSymbol) -> %
- atanh: % -> %
- basis: () -> Vector %
from FramedModule %
ceiling: % -> %
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- characteristicPolynomial: % -> SparseUnivariatePolynomial %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Integer -> %
from NonAssociativeRing
coerce: NemoAlgebraicNumber -> %
coerce: NemoRational -> %
coerce: PositiveInteger -> %
- commutator: (%, %) -> %
from NonAssociativeRng
- complex: (%, %) -> %
from ComplexCategory %
complexNormalForm: % -> %
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- conjugate: % -> %
from ComplexCategory %
conjugate: (%, JuliaSymbol) -> %
- convert: % -> SparseUnivariatePolynomial %
- convert: % -> String
from ConvertibleTo String
- convert: % -> Vector %
from FramedModule %
- convert: SparseUnivariatePolynomial % -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- convert: Vector % -> %
from FramedModule %
- coordinates: % -> Vector %
from FramedModule %
- coordinates: (%, Vector %) -> Vector %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coordinates: (Vector %, Vector %) -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- coordinates: Vector % -> Matrix %
from FramedModule %
- cos: % -> %
cos: (%, JuliaSymbol) -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
csign: % -> %
- D: (%, % -> %) -> %
from DifferentialExtension %
- D: (%, % -> %, NonNegativeInteger) -> %
from DifferentialExtension %
- definingPolynomial: () -> SparseUnivariatePolynomial %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- differentiate: % -> % if % has DifferentialRing
from DifferentialRing
- differentiate: (%, % -> %) -> %
from DifferentialExtension %
- differentiate: (%, % -> %, NonNegativeInteger) -> %
from DifferentialExtension %
- differentiate: (%, NonNegativeInteger) -> % if % has DifferentialRing
from DifferentialRing
- discriminant: () -> %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- discriminant: Vector % -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- divide: (%, %) -> Record(quotient: %, remainder: %) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
erf: % -> %
erfc: % -> %
erfi: % -> %
- euclideanSize: % -> NonNegativeInteger if % has Field or % has IntegerNumberSystem
from EuclideanDomain
eulerGamma: () -> %
exp1: () -> %
- exp: % -> %
exp: () -> %
- expressIdealMember: (List %, %) -> Union(List %, failed) if % has Field or % has IntegerNumberSystem
from PrincipalIdealDomain
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- factor: % -> Factored % if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
floor: % -> %
Gamma: % -> %
- gcd: (%, %) -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- gcd: List % -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- generator: () -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- hashUpdate!: (HashState, %) -> HashState if % has Hashable
from Hashable
- imag: % -> %
from ComplexCategory %
imaginary?: % -> Boolean
- imaginary: () -> %
from ComplexCategory %
- index: PositiveInteger -> % if % has Finite
from Finite
infinity?: % -> Boolean
infinity: % -> %
infinity: () -> %
integer?: % -> Boolean
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %, %) -> %
from JuliaObjectType
- jlId: % -> String
from JuliaObjectType
jlOptions: % -> JuliaObjDict
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
jnecf: (Fraction Integer, Fraction Integer) -> %
jnecf: (NemoRational, NemoRational) -> %
jnecf: NemoAlgebraicNumber -> %
jnecf: NemoRational -> %
- latex: % -> String
from SetCategory
- lcm: (%, %) -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- lcm: List % -> % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from GcdDomain
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- lift: % -> SparseUnivariatePolynomial %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- log: % -> %
- lookup: % -> PositiveInteger if % has Finite
from Finite
- map: (% -> %, %) -> %
from FullyEvalableOver %
- multiEuclidean: (List %, %) -> Union(List %, failed) if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- mutable?: % -> Boolean
from JuliaObjectType
negativeInfinity: () -> %
- norm: % -> %
from ComplexCategory %
- nothing?: % -> Boolean
from JuliaObjectType
- nthRoot: (%, Integer) -> %
from RadicalCategory
number?: % -> Boolean
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
positiveInfinity: () -> %
pow: (%, Integer, JuliaSymbol) -> %
- prime?: % -> Boolean if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- principalIdeal: List % -> Record(coef: List %, generator: %) if % has Field or % has IntegerNumberSystem
from PrincipalIdealDomain
- quo: (%, %) -> % if % has Field or % has IntegerNumberSystem
from EuclideanDomain
random: (Integer, Integer) -> %
random: (Integer, Integer, JuliaSymbol) -> %
- rank: () -> PositiveInteger
from FramedModule %
rational?: % -> Boolean
real?: % -> Boolean
- real: % -> %
from ComplexCategory %
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduce: SparseUnivariatePolynomial % -> %
from MonogenicAlgebra(%, SparseUnivariatePolynomial %)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix %, vec: Vector %)
from LinearlyExplicitOver %
- reducedSystem: Matrix % -> Matrix %
from LinearlyExplicitOver %
- regularRepresentation: % -> Matrix %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- regularRepresentation: (%, Vector %) -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- rem: (%, %) -> % if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- represents: (Vector %, Vector %) -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- represents: Vector % -> %
from FramedModule %
- retract: % -> %
from RetractableTo %
- retractIfCan: % -> Union(%, failed)
from RetractableTo %
retractIfCan: % -> Union(NemoAlgebraicNumber, failed)
retractIfCan: % -> Union(NemoInteger, failed)
retractIfCan: % -> Union(NemoRational, failed)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
sign: % -> %
signedInfinity?: % -> Boolean
- sin: % -> %
sin: (%, JuliaSymbol) -> %
- sinh: % -> %
- size: () -> NonNegativeInteger if % has Finite
from Finite
- sizeLess?: (%, %) -> Boolean if % has Field or % has IntegerNumberSystem
from EuclideanDomain
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored % if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- squareFreePart: % -> % if % has Field or % has IntegerNumberSystem or % has EuclideanDomain and % has PolynomialFactorizationExplicit
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has FiniteFieldCategory
- string: % -> String
from JuliaObjectType
- subtractIfCan: (%, %) -> Union(%, failed)
- tan: % -> %
tan: (%, JuliaSymbol) -> %
- tanh: % -> %
- trace: % -> %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
- traceMatrix: () -> Matrix %
from FramedAlgebra(%, SparseUnivariatePolynomial %)
- traceMatrix: Vector % -> Matrix %
from FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
undefined?: % -> Boolean
undefined: () -> %
unknown?: % -> Boolean
unknown: () -> %
unsignedInfinity?: % -> Boolean
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
ArcTrigonometricFunctionCategory
BiModule(%, %)
ConvertibleTo SparseUnivariatePolynomial %
EuclideanDomain if % has Field or % has IntegerNumberSystem
FiniteRankAlgebra(%, SparseUnivariatePolynomial %)
FramedAlgebra(%, SparseUnivariatePolynomial %)
GcdDomain if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
LeftOreRing if % has EuclideanDomain and % has PolynomialFactorizationExplicit or % has Field or % has IntegerNumberSystem
Module %
MonogenicAlgebra(%, SparseUnivariatePolynomial %)
PolynomialFactorizationExplicit if % has EuclideanDomain
PrincipalIdealDomain if % has Field or % has IntegerNumberSystem
TranscendentalFunctionCategory
UniqueFactorizationDomain if % has IntegerNumberSystem or % has Field or % has EuclideanDomain and % has PolynomialFactorizationExplicit