JuliaMatrix R¶
jobject.spad line 1628 [edit on github]
This domain provides a generic Julia matrix type stored in Julia with no bound checking on elt's. Minimum index is 1. Beware, for matrix with Nemo elements, contrary to Julia matrix, Nemo follows the convention of the C libraries, it wraps and uses row major representation. See https://nemocas.github.io/Nemo.jl/stable/developer/interfaces/#Column-major-vs-row-major-matrices for more information.
- #: % -> NonNegativeInteger
from Aggregate
- *: (%, %) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- *: (%, JuliaVector R) -> JuliaVector R
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- *: (%, R) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- *: (Integer, %) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- *: (JuliaVector R, %) -> JuliaVector R
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- *: (R, %) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- +: (%, %) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- -: % -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- -: (%, %) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- /: (%, R) -> % if R has Field
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- ^: (%, Integer) -> % if R has Field
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- ^: (%, NonNegativeInteger) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- antisymmetric?: % -> Boolean
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- any?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- array2: List List R -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- blockConcat: List List % -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- blockSplit: (%, List NonNegativeInteger, List NonNegativeInteger) -> List List %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- blockSplit: (%, PositiveInteger, PositiveInteger) -> List List %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- coerce: % -> JuliaObject
from JuliaObjectType
- coerce: % -> Matrix R
coerce(m)coerces a copy ofmto a Matrix(R).- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: JuliaComplexF32Matrix -> JuliaMatrix JuliaObjComplexF32
coerce(x): convenience function.
- coerce: JuliaComplexF64Matrix -> JuliaMatrix JuliaObjComplexF64
coerce(x): convenience function.
- coerce: JuliaFloat32Matrix -> JuliaMatrix JuliaObjFloat32
coerce(x): convenience function.
- coerce: JuliaFloat64Matrix -> JuliaMatrix JuliaObjFloat64
coerce(x): convenience function.- coerce: JuliaVector R -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- colSlice: % -> Segment Integer
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- column: (%, Integer) -> JuliaVector R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- columnSpace: % -> List JuliaVector R if R has EuclideanDomain
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- convert: % -> String
from ConvertibleTo String
- count: (R -> Boolean, %) -> NonNegativeInteger
from HomogeneousAggregate R
- count: (R, %) -> NonNegativeInteger
from HomogeneousAggregate R
- determinant: % -> R if R has CommutativeRing
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- diagonal?: % -> Boolean
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- diagonalMatrix: JuliaVector R -> %
diagonalMatrix(v)returns a diagonal matrix with elements ofv.- diagonalMatrix: List % -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- diagonalMatrix: List R -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- eigenvalues: % -> JuliaVector R if R has ComplexCategory NemoRealField
eigenvalues(m)returns eigenvalues ofm.
- elt: (%, Integer) -> JuliaObject
from JuliaObjectAggregate
- elt: (%, Integer, Integer) -> R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, Integer, Integer, R) -> R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, Integer, List Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, Integer, List Segment Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, JuliaSymbol) -> JuliaObject
from JuliaObjectAggregate
- elt: (%, List Integer, Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, List Integer, List Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, List Integer, Segment Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, List Segment Integer, Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, List Segment Integer, List Segment Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, List Segment Integer, Segment Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, Segment Integer, List Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, Segment Integer, List Segment Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- elt: (%, Segment Integer, Segment Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- eval: (%, Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List Equation R) -> % if R has Evalable R
from Evalable R
- eval: (%, List R, List R) -> % if R has Evalable R
from InnerEvalable(R, R)
- eval: (%, R, R) -> % if R has Evalable R
from InnerEvalable(R, R)
- every?: (R -> Boolean, %) -> Boolean
from HomogeneousAggregate R
- exquo: (%, R) -> Union(%, failed) if R has IntegralDomain
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- factorize: JuliaMatrix JuliaObjComplexF32 -> JuliaObject
factorize(m)factorizesmusing a suited matrix factorization form. For a symmetric matrix the Bunch-Kaufman factorization will be choosen whereas for generic matrices, a LU or aQRfactorization will be used.
- factorize: JuliaMatrix JuliaObjComplexF64 -> JuliaObject
factorize(m)factorizesmusing a suited matrix factorization form. For a symmetric matrix the Bunch-Kaufman factorization will be choosen whereas for generic matrices, a LU or aQRfactorization will be used.
- factorize: JuliaMatrix JuliaObjFloat32 -> JuliaObject
factorize(m)factorizesmusing a suited matrix factorization form. For a symmetric matrix the Bunch-Kaufman factorization will be choosen whereas for generic matrices, a LU or aQRfactorization will be used.
- factorize: JuliaMatrix JuliaObjFloat64 -> JuliaObject
factorize(m)factorizesmusing a suited matrix factorization form. For a symmetric matrix the Bunch-Kaufman factorization will be choosen whereas for generic matrices, a LU or aQRfactorization will be used.
- fill!: (%, R) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- horizConcat: (%, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- horizConcat: List % -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- horizSplit: (%, List NonNegativeInteger) -> List %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- horizSplit: (%, PositiveInteger) -> List %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- identity: NonNegativeInteger -> %
identity(n)returns anbynidentity matrix.
- inverse: % -> %
inverse(m)returns inverse matrix. Throws a Julia error ifmis no invertible.- inverse: % -> Union(%, failed) if R has Field
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- invertIfCan: % -> Union(%, failed) if R has IntegralDomain
invertIfCan(m)returns the inverse of the matrixm. If the matrix is not invertible, “failed” is returned. Error: if the matrix is not square.
- jlAbout: % -> Void
from JuliaObjectType
- jlApply: (String, %) -> %
from JuliaObjectType
- jlApply: (String, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %) -> %
from JuliaObjectType
- jlApply: (String, %, %, %, %, %) -> %
from JuliaObjectType
- jlApprox?: (%, %) -> Boolean if R hasn’t NemoType
jlApprox?(A,B)computes component-wise inexact equality with default parameters. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds.
- jlDisplay: % -> Void
from JuliaObjectType
- jlId: % -> JuliaInt64
from JuliaObjectType
- jlObject: () -> String
from JuliaObjectType
- jlRef: % -> SExpression
from JuliaObjectType
- jlref: String -> %
from JuliaObjectType
- jlType: % -> String
from JuliaObjectType
- jmatrix: String -> %
jmatrix(str)evaluates the stringstrand returns the generated matrix. No checks are done at the FriCAS level.
- kronecker_prod1: (%, Integer, List List NonNegativeInteger, List %, NonNegativeInteger, NonNegativeInteger, Union(R, one)) -> Void
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- kroneckerProduct: (%, %) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- kroneckerProduct: List % -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- kroneckerSum: (%, %) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- kroneckerSum: List % -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- latex: % -> String
from SetCategory
- less?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- listOfLists: % -> List List R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- map!: (R -> R, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- map: ((R, R) -> R, %, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- map: ((R, R) -> R, %, %, R) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- map: (R -> R, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- matrix: (NonNegativeInteger, NonNegativeInteger, (Integer, Integer) -> R) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
matrix: JuliaObject -> %
- matrix: List List R -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- max: % -> R if R has OrderedSet
from HomogeneousAggregate R
- max: ((R, R) -> Boolean, %) -> R
from HomogeneousAggregate R
- maxColIndex: % -> Integer
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- maxRowIndex: % -> Integer
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- member?: (R, %) -> Boolean
from HomogeneousAggregate R
- members: % -> List R
from HomogeneousAggregate R
- min: % -> R if R has OrderedSet
from HomogeneousAggregate R
- minColIndex: % -> Integer
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- minordet: % -> R if R has CommutativeRing
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- minRowIndex: % -> Integer
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- more?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- mutable?: % -> Boolean
from JuliaObjectType
- ncols: % -> NonNegativeInteger
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- new: (NonNegativeInteger, NonNegativeInteger, R) -> %
new(m, n, x)creates a matrix of sizembynwith all elementsx.
- nothing?: % -> Boolean
from JuliaObjectType
- nrand: (PositiveInteger, PositiveInteger) -> JuliaMatrix JuliaComplexFloat if R hasn’t NemoType and R has ComplexCategory JuliaFloat
nrand(m,n)returns a JuliaMatrix of size (m,n) with normally distributed random numbers. example{mat := nrand(4,4)$JuliaMatrix(JuliaComplexFloat)} example{qr := jlApply(“qr”, mat)} example{qr.Q * qr.R}
- nrand: (PositiveInteger, PositiveInteger) -> JuliaMatrix JuliaFloat if R has FloatingPointSystem and R has arbitraryPrecision and R hasn’t NemoType
nrand(m,n)returns a JuliaMatrix of size (m,n) with normally distributed random numbers. For example: example{mat := nrand(4,4)$JuliaMatrix(JuliaFloat)} example{chol := jlApply(“cholesky”, mat * transpose(mat))} example{chol.L * chol.U}
- nrows: % -> NonNegativeInteger
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- nullity: % -> NonNegativeInteger if R has IntegralDomain
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- nullSpace: % -> List JuliaVector R if R has IntegralDomain
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- parts: % -> List R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- Pfaffian: % -> R if R has CommutativeRing
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- positivePower: (%, Integer) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- qelt: (%, Integer) -> JuliaObject
from JuliaObjectAggregate
- qelt: (%, Integer, Integer) -> R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- qelt: (%, JuliaSymbol) -> JuliaObject
from JuliaObjectAggregate
- qnew: (NonNegativeInteger, NonNegativeInteger) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- qsetelt!: (%, Integer, Integer, R) -> R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- radicalEigenvalues: % -> JuliaVector NemoAlgebraicNumber if R has NemoRing and R has QuotientFieldCategory NemoInteger or R has NemoRing and R has IntegerNumberSystem
radicalEigenvalues(mat)returns a Julia vector containing the eigenvalues ofmat.
- radicalEigenvaluesWithMultiplicities: % -> JuliaVector JuliaObjTuple if R has NemoRing and R has QuotientFieldCategory NemoInteger or R has NemoRing and R has IntegerNumberSystem
radicalEigenvaluesWithMultiplicities(mat)returns a Julia vector containing Julia tuples of the eigenvalues and their multiplicities. The tuples are of internal type (NemoAlgebraicNumber,JuliaObjInt64).
- rank: % -> NonNegativeInteger if R has IntegralDomain
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- row: (%, Integer) -> JuliaVector R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- rowEchelon: % -> % if R has EuclideanDomain
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- rowSlice: % -> Segment Integer
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- scalarMatrix: (NonNegativeInteger, R) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- setColumn!: (%, Integer, JuliaVector R) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, Integer, Integer, R) -> R
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, Integer, List Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, Integer, List Segment Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, List Integer, Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, List Integer, List Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, List Integer, Segment Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, List Segment Integer, Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, List Segment Integer, List Segment Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, List Segment Integer, Segment Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, Segment Integer, List Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, Segment Integer, List Segment Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setelt!: (%, Segment Integer, Segment Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setRow!: (%, Integer, JuliaVector R) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- setsubMatrix!: (%, Integer, Integer, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- size?: (%, NonNegativeInteger) -> Boolean
from Aggregate
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- square?: % -> Boolean
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- squareTop: % -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- subMatrix: (%, Integer, Integer, Integer, Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- swapColumns!: (%, Integer, Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- swapRows!: (%, Integer, Integer) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- symmetric?: % -> Boolean
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- transpose: % -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- transpose: JuliaVector R -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- urand01: (PositiveInteger, PositiveInteger) -> JuliaMatrix JuliaComplexFloat if R hasn’t NemoType and R has ComplexCategory JuliaFloat
urand01(m,n)returns a JuliaMatrix of size (m,n) with uniformly distributed random number contained in [0,1]. example{mat := urand01(4,4)$JuliaMatrix(JuliaComplexFloat)} example{qr := jlApply(“qr”, mat)} example{qr.Q * qr.R}
- urand01: (PositiveInteger, PositiveInteger) -> JuliaMatrix JuliaFloat if R has FloatingPointSystem and R has arbitraryPrecision and R hasn’t NemoType
urand01(m,n)returns a JuliaMatrix of size (m,n) with uniformly distributed random number contained in [0,1]. example{mat := urand01(4,4)$JuliaMatrix(JuliaFloat)} example{qr := jlApply(“qr”, mat)} example{qr.Q * qr.R}
- vertConcat: (%, %) -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- vertConcat: List % -> %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- vertSplit: (%, List NonNegativeInteger) -> List %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- vertSplit: (%, PositiveInteger) -> List %
from TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)
- zero?: % -> Boolean
from MatrixCategory(R, JuliaVector R, JuliaVector R)
- zero: (NonNegativeInteger, NonNegativeInteger) -> %
from MatrixCategory(R, JuliaVector R, JuliaVector R)
Comparable if R has Comparable
Evalable R if R has Evalable R
InnerEvalable(R, R) if R has Evalable R
JuliaMatrixCategory(R, JuliaVector R, JuliaVector R)
MatrixCategory(R, JuliaVector R, JuliaVector R)
TwoDimensionalArrayCategory(R, JuliaVector R, JuliaVector R)